Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07204
Cited By
Ensemble Adversarial Training: Attacks and Defenses
19 May 2017
Florian Tramèr
Alexey Kurakin
Nicolas Papernot
Ian Goodfellow
Dan Boneh
Patrick McDaniel
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Ensemble Adversarial Training: Attacks and Defenses"
50 / 422 papers shown
Title
Conservative Objective Models for Effective Offline Model-Based Optimization
Brandon Trabucco
Aviral Kumar
Xinyang Geng
Sergey Levine
OffRL
36
86
0
14 Jul 2021
Boosting Transferability of Targeted Adversarial Examples via Hierarchical Generative Networks
Xiao Yang
Yinpeng Dong
Tianyu Pang
Hang Su
Jun Zhu
AAML
38
38
0
05 Jul 2021
Adversarial Visual Robustness by Causal Intervention
Kaihua Tang
Ming Tao
Hanwang Zhang
CML
AAML
27
21
0
17 Jun 2021
Code Integrity Attestation for PLCs using Black Box Neural Network Predictions
Yuqi Chen
Christopher M. Poskitt
Jun Sun
AAML
20
9
0
15 Jun 2021
Sparta: Spatially Attentive and Adversarially Robust Activation
Qing-Wu Guo
Felix Juefei Xu
Changqing Zhou
Wei Feng
Yang Liu
Song Wang
AAML
25
4
0
18 May 2021
Salient Feature Extractor for Adversarial Defense on Deep Neural Networks
Jinyin Chen
Ruoxi Chen
Haibin Zheng
Zhaoyan Ming
Wenrong Jiang
Chen Cui
AAML
25
10
0
14 May 2021
Multi-Robot Coordination and Planning in Uncertain and Adversarial Environments
Lifeng Zhou
Pratap Tokekar
34
43
0
02 May 2021
Random Noise Defense Against Query-Based Black-Box Attacks
Zeyu Qin
Yanbo Fan
H. Zha
Baoyuan Wu
AAML
19
59
0
23 Apr 2021
Robust Sensor Fusion Algorithms Against Voice Command Attacks in Autonomous Vehicles
Jiwei Guan
Xi Zheng
Chen Wang
Yipeng Zhou
A. Jolfaei
AAML
17
5
0
20 Apr 2021
Staircase Sign Method for Boosting Adversarial Attacks
Qilong Zhang
Xiaosu Zhu
Jingkuan Song
Lianli Gao
Heng Tao Shen
AAML
35
13
0
20 Apr 2021
Relating Adversarially Robust Generalization to Flat Minima
David Stutz
Matthias Hein
Bernt Schiele
OOD
29
65
0
09 Apr 2021
Class-Aware Robust Adversarial Training for Object Detection
Pin-Chun Chen
Bo-Han Kung
Jun-Cheng Chen
AAML
ObjD
18
48
0
30 Mar 2021
Privacy and Trust Redefined in Federated Machine Learning
Pavlos Papadopoulos
Will Abramson
A. Hall
Nikolaos Pitropakis
William J. Buchanan
33
42
0
29 Mar 2021
Enhancing the Transferability of Adversarial Attacks through Variance Tuning
Xiaosen Wang
Kun He
AAML
19
376
0
29 Mar 2021
SoK: A Modularized Approach to Study the Security of Automatic Speech Recognition Systems
Yuxuan Chen
Jiangshan Zhang
Xuejing Yuan
Shengzhi Zhang
Kai Chen
Xiaofeng Wang
Shanqing Guo
AAML
37
15
0
19 Mar 2021
Generating Unrestricted Adversarial Examples via Three Parameters
Hanieh Naderi
Leili Goli
S. Kasaei
35
8
0
13 Mar 2021
Fixing Data Augmentation to Improve Adversarial Robustness
Sylvestre-Alvise Rebuffi
Sven Gowal
D. A. Calian
Florian Stimberg
Olivia Wiles
Timothy A. Mann
AAML
30
268
0
02 Mar 2021
A Multiclass Boosting Framework for Achieving Fast and Provable Adversarial Robustness
Jacob D. Abernethy
Pranjal Awasthi
Satyen Kale
AAML
24
6
0
01 Mar 2021
Towards Adversarial-Resilient Deep Neural Networks for False Data Injection Attack Detection in Power Grids
Jiangnan Li
Yingyuan Yang
Jinyuan Stella Sun
K. Tomsovic
Hairong Qi
AAML
31
14
0
17 Feb 2021
Resilient Machine Learning for Networked Cyber Physical Systems: A Survey for Machine Learning Security to Securing Machine Learning for CPS
Felix O. Olowononi
D. Rawat
Chunmei Liu
34
132
0
14 Feb 2021
Quantifying and Mitigating Privacy Risks of Contrastive Learning
Xinlei He
Yang Zhang
11
51
0
08 Feb 2021
Adversarial Attacks and Defenses in Physiological Computing: A Systematic Review
Dongrui Wu
Jiaxin Xu
Weili Fang
Yi Zhang
Liuqing Yang
Xiaodong Xu
Hanbin Luo
Xiang Yu
AAML
21
25
0
04 Feb 2021
Robust Adversarial Attacks Against DNN-Based Wireless Communication Systems
Alireza Bahramali
Milad Nasr
Amir Houmansadr
Dennis Goeckel
Don Towsley
AAML
34
53
0
01 Feb 2021
Increasing the Confidence of Deep Neural Networks by Coverage Analysis
Giulio Rossolini
Alessandro Biondi
Giorgio Buttazzo
AAML
26
13
0
28 Jan 2021
Robust Android Malware Detection System against Adversarial Attacks using Q-Learning
Hemant Rathore
S. K. Sahay
Piyush Nikam
Mohit Sewak
AAML
16
61
0
27 Jan 2021
Generalizing Adversarial Examples by AdaBelief Optimizer
Yixiang Wang
Jiqiang Liu
Xiaolin Chang
AAML
14
1
0
25 Jan 2021
Practical Blind Membership Inference Attack via Differential Comparisons
Bo Hui
Yuchen Yang
Haolin Yuan
Philippe Burlina
Neil Zhenqiang Gong
Yinzhi Cao
MIACV
30
119
0
05 Jan 2021
Robust Machine Learning Systems: Challenges, Current Trends, Perspectives, and the Road Ahead
Muhammad Shafique
Mahum Naseer
T. Theocharides
C. Kyrkou
O. Mutlu
Lois Orosa
Jungwook Choi
OOD
75
100
0
04 Jan 2021
Local Competition and Stochasticity for Adversarial Robustness in Deep Learning
Konstantinos P. Panousis
S. Chatzis
Antonios Alexos
Sergios Theodoridis
BDL
AAML
OOD
56
19
0
04 Jan 2021
On Success and Simplicity: A Second Look at Transferable Targeted Attacks
Zhengyu Zhao
Zhuoran Liu
Martha Larson
AAML
24
121
0
21 Dec 2020
A Closer Look at the Robustness of Vision-and-Language Pre-trained Models
Linjie Li
Zhe Gan
Jingjing Liu
VLM
33
42
0
15 Dec 2020
Hypothesis Disparity Regularized Mutual Information Maximization
Qicheng Lao
Xiang Jiang
Mohammad Havaei
30
24
0
15 Dec 2020
Achieving Adversarial Robustness Requires An Active Teacher
Chao Ma
Lexing Ying
21
1
0
14 Dec 2020
Locally optimal detection of stochastic targeted universal adversarial perturbations
Amish Goel
P. Moulin
AAML
12
2
0
08 Dec 2020
FAT: Federated Adversarial Training
Giulio Zizzo
Ambrish Rawat
M. Sinn
Beat Buesser
FedML
25
43
0
03 Dec 2020
Visually Imperceptible Adversarial Patch Attacks on Digital Images
Yaguan Qian
Jiamin Wang
Bin Wang
Xiang Ling
Zhaoquan Gu
Chunming Wu
Wassim Swaileh
AAML
22
2
0
02 Dec 2020
Boosting Adversarial Attacks on Neural Networks with Better Optimizer
Heng Yin
Hengwei Zhang
Jin-dong Wang
Ruiyu Dou
AAML
14
8
0
01 Dec 2020
Guided Adversarial Attack for Evaluating and Enhancing Adversarial Defenses
Gaurang Sriramanan
Sravanti Addepalli
Arya Baburaj
R. Venkatesh Babu
AAML
8
92
0
30 Nov 2020
A Study on the Uncertainty of Convolutional Layers in Deep Neural Networks
Hao Shen
Sihong Chen
Ran Wang
27
5
0
27 Nov 2020
Omni: Automated Ensemble with Unexpected Models against Adversarial Evasion Attack
Rui Shu
Tianpei Xia
Laurie A. Williams
Tim Menzies
AAML
24
15
0
23 Nov 2020
Learnable Boundary Guided Adversarial Training
Jiequan Cui
Shu-Lin Liu
Liwei Wang
Jiaya Jia
OOD
AAML
19
124
0
23 Nov 2020
Contextual Fusion For Adversarial Robustness
Aiswarya Akumalla
S. Haney
M. Bazhenov
AAML
22
1
0
18 Nov 2020
The Vulnerability of the Neural Networks Against Adversarial Examples in Deep Learning Algorithms
Rui Zhao
AAML
21
1
0
02 Nov 2020
Concealed Data Poisoning Attacks on NLP Models
Eric Wallace
Tony Zhao
Shi Feng
Sameer Singh
SILM
11
18
0
23 Oct 2020
Learning Black-Box Attackers with Transferable Priors and Query Feedback
Jiancheng Yang
Yangzhou Jiang
Xiaoyang Huang
Bingbing Ni
Chenglong Zhao
AAML
18
81
0
21 Oct 2020
A Unified Approach to Interpreting and Boosting Adversarial Transferability
Xin Wang
Jie Ren
Shuyu Lin
Xiangming Zhu
Yisen Wang
Quanshi Zhang
AAML
26
94
0
08 Oct 2020
Uncovering the Limits of Adversarial Training against Norm-Bounded Adversarial Examples
Sven Gowal
Chongli Qin
J. Uesato
Timothy A. Mann
Pushmeet Kohli
AAML
17
323
0
07 Oct 2020
Understanding Catastrophic Overfitting in Single-step Adversarial Training
Hoki Kim
Woojin Lee
Jaewook Lee
AAML
11
107
0
05 Oct 2020
Generating Adversarial yet Inconspicuous Patches with a Single Image
Jinqi Luo
Tao Bai
Jun Zhao
AAML
27
6
0
21 Sep 2020
Adversarial Training with Stochastic Weight Average
Joong-won Hwang
Youngwan Lee
Sungchan Oh
Yuseok Bae
OOD
AAML
19
11
0
21 Sep 2020
Previous
1
2
3
4
5
6
7
8
9
Next