Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07263
Cited By
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
20 May 2017
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods"
50 / 352 papers shown
Title
Anomalous Example Detection in Deep Learning: A Survey
Saikiran Bulusu
B. Kailkhura
Bo-wen Li
P. Varshney
D. Song
AAML
28
47
0
16 Mar 2020
Learn2Perturb: an End-to-end Feature Perturbation Learning to Improve Adversarial Robustness
Ahmadreza Jeddi
M. Shafiee
Michelle Karg
C. Scharfenberger
A. Wong
OOD
AAML
67
63
0
02 Mar 2020
Overfitting in adversarially robust deep learning
Leslie Rice
Eric Wong
Zico Kolter
47
785
0
26 Feb 2020
Real-Time Detectors for Digital and Physical Adversarial Inputs to Perception Systems
Y. Kantaros
Taylor J. Carpenter
Kaustubh Sridhar
Yahan Yang
Insup Lee
James Weimer
AAML
17
12
0
23 Feb 2020
Non-Intrusive Detection of Adversarial Deep Learning Attacks via Observer Networks
K. Sivamani
R. Sahay
Aly El Gamal
AAML
11
3
0
22 Feb 2020
On Adaptive Attacks to Adversarial Example Defenses
Florian Tramèr
Nicholas Carlini
Wieland Brendel
A. Madry
AAML
104
820
0
19 Feb 2020
Deflecting Adversarial Attacks
Yao Qin
Nicholas Frosst
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
AAML
30
15
0
18 Feb 2020
CEB Improves Model Robustness
Ian S. Fischer
Alexander A. Alemi
AAML
19
28
0
13 Feb 2020
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
27
115
0
13 Feb 2020
More Data Can Expand the Generalization Gap Between Adversarially Robust and Standard Models
Lin Chen
Yifei Min
Mingrui Zhang
Amin Karbasi
OOD
38
64
0
11 Feb 2020
Robustness of Bayesian Neural Networks to Gradient-Based Attacks
Ginevra Carbone
Matthew Wicker
Luca Laurenti
A. Patané
Luca Bortolussi
G. Sanguinetti
AAML
38
77
0
11 Feb 2020
Importance-Driven Deep Learning System Testing
Simos Gerasimou
Hasan Ferit Eniser
A. Sen
Alper Çakan
AAML
VLM
30
98
0
09 Feb 2020
Certified Robustness of Community Detection against Adversarial Structural Perturbation via Randomized Smoothing
Jinyuan Jia
Binghui Wang
Xiaoyu Cao
Neil Zhenqiang Gong
AAML
83
83
0
09 Feb 2020
Analysis of Random Perturbations for Robust Convolutional Neural Networks
Adam Dziedzic
S. Krishnan
OOD
AAML
24
1
0
08 Feb 2020
Minimax Defense against Gradient-based Adversarial Attacks
Blerta Lindqvist
R. Izmailov
AAML
19
0
0
04 Feb 2020
Adversarial Machine Learning -- Industry Perspectives
Ramnath Kumar
Magnus Nyström
J. Lambert
Andrew Marshall
Mario Goertzel
Andi Comissoneru
Matt Swann
Sharon Xia
AAML
SILM
29
232
0
04 Feb 2020
Defending Adversarial Attacks via Semantic Feature Manipulation
Shuo Wang
Tianle Chen
Surya Nepal
Carsten Rudolph
M. Grobler
Shangyu Chen
AAML
24
5
0
03 Feb 2020
Universal Adversarial Attack on Attention and the Resulting Dataset DAmageNet
Sizhe Chen
Zhengbao He
Chengjin Sun
Jie-jin Yang
Xiaolin Huang
AAML
31
103
0
16 Jan 2020
Fast is better than free: Revisiting adversarial training
Eric Wong
Leslie Rice
J. Zico Kolter
AAML
OOD
99
1,158
0
12 Jan 2020
WAF-A-MoLE: Evading Web Application Firewalls through Adversarial Machine Learning
Christian Scano
Biagio Montaruli
Gabriele Costa
Giovanni Lagorio
AAML
21
27
0
07 Jan 2020
Efficient Adversarial Training with Transferable Adversarial Examples
Haizhong Zheng
Ziqi Zhang
Juncheng Gu
Honglak Lee
A. Prakash
AAML
24
108
0
27 Dec 2019
Benchmarking Adversarial Robustness
Yinpeng Dong
Qi-An Fu
Xiao Yang
Tianyu Pang
Hang Su
Zihao Xiao
Jun Zhu
AAML
28
36
0
26 Dec 2019
Malware Makeover: Breaking ML-based Static Analysis by Modifying Executable Bytes
Keane Lucas
Mahmood Sharif
Lujo Bauer
Michael K. Reiter
S. Shintre
AAML
31
66
0
19 Dec 2019
Deep Neural Network Fingerprinting by Conferrable Adversarial Examples
Nils Lukas
Yuxuan Zhang
Florian Kerschbaum
MLAU
FedML
AAML
31
144
0
02 Dec 2019
Using Depth for Pixel-Wise Detection of Adversarial Attacks in Crowd Counting
Weizhe Liu
Mathieu Salzmann
Pascal Fua
AAML
27
9
0
26 Nov 2019
Playing it Safe: Adversarial Robustness with an Abstain Option
Cassidy Laidlaw
S. Feizi
AAML
31
20
0
25 Nov 2019
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
37
13
0
20 Nov 2019
Generate (non-software) Bugs to Fool Classifiers
Hiromu Yakura
Youhei Akimoto
Jun Sakuma
AAML
22
10
0
20 Nov 2019
Deep Verifier Networks: Verification of Deep Discriminative Models with Deep Generative Models
Tong Che
Xiaofeng Liu
Site Li
Yubin Ge
Ruixiang Zhang
Caiming Xiong
Yoshua Bengio
35
52
0
18 Nov 2019
Adversarial Examples in Modern Machine Learning: A Review
R. Wiyatno
Anqi Xu
Ousmane Amadou Dia
A. D. Berker
AAML
18
104
0
13 Nov 2019
Imperceptible Adversarial Attacks on Tabular Data
Vincent Ballet
X. Renard
Jonathan Aigrain
Thibault Laugel
P. Frossard
Marcin Detyniecki
12
72
0
08 Nov 2019
Who is Real Bob? Adversarial Attacks on Speaker Recognition Systems
Guangke Chen
Sen Chen
Lingling Fan
Xiaoning Du
Zhe Zhao
Fu Song
Yang Liu
AAML
19
193
0
03 Nov 2019
Enhancing Certifiable Robustness via a Deep Model Ensemble
Huan Zhang
Minhao Cheng
Cho-Jui Hsieh
33
9
0
31 Oct 2019
Adversarial Example in Remote Sensing Image Recognition
Li Chen
Guowei Zhu
Qi Li
Haifeng Li
AAML
18
26
0
29 Oct 2019
Algorithmic decision-making in AVs: Understanding ethical and technical concerns for smart cities
H. S. M. Lim
Araz Taeihagh
24
82
0
29 Oct 2019
Detection of Adversarial Attacks and Characterization of Adversarial Subspace
Mohammad Esmaeilpour
P. Cardinal
Alessandro Lameiras Koerich
AAML
24
17
0
26 Oct 2019
An Alternative Surrogate Loss for PGD-based Adversarial Testing
Sven Gowal
J. Uesato
Chongli Qin
Po-Sen Huang
Timothy A. Mann
Pushmeet Kohli
AAML
50
89
0
21 Oct 2019
A New Defense Against Adversarial Images: Turning a Weakness into a Strength
Tao Yu
Shengyuan Hu
Chuan Guo
Wei-Lun Chao
Kilian Q. Weinberger
AAML
58
101
0
16 Oct 2019
Deep Neural Rejection against Adversarial Examples
Angelo Sotgiu
Ambra Demontis
Marco Melis
Battista Biggio
Giorgio Fumera
Xiaoyi Feng
Fabio Roli
AAML
19
68
0
01 Oct 2019
Role of Spatial Context in Adversarial Robustness for Object Detection
Aniruddha Saha
Akshayvarun Subramanya
Koninika Patil
Hamed Pirsiavash
ObjD
AAML
32
53
0
30 Sep 2019
Impact of Low-bitwidth Quantization on the Adversarial Robustness for Embedded Neural Networks
Rémi Bernhard
Pierre-Alain Moëllic
J. Dutertre
AAML
MQ
24
18
0
27 Sep 2019
Mixup Inference: Better Exploiting Mixup to Defend Adversarial Attacks
Tianyu Pang
Kun Xu
Jun Zhu
AAML
28
103
0
25 Sep 2019
Defending Against Physically Realizable Attacks on Image Classification
Tong Wu
Liang Tong
Yevgeniy Vorobeychik
AAML
19
125
0
20 Sep 2019
Adversarial Learning with Margin-based Triplet Embedding Regularization
Yaoyao Zhong
Weihong Deng
AAML
28
50
0
20 Sep 2019
Toward Robust Image Classification
Basemah Alshemali
Alta Graham
Jugal Kalita
AAML
40
6
0
19 Sep 2019
Sparse and Imperceivable Adversarial Attacks
Francesco Croce
Matthias Hein
AAML
39
199
0
11 Sep 2019
When Explainability Meets Adversarial Learning: Detecting Adversarial Examples using SHAP Signatures
Gil Fidel
Ron Bitton
A. Shabtai
FAtt
GAN
21
119
0
08 Sep 2019
Protecting Neural Networks with Hierarchical Random Switching: Towards Better Robustness-Accuracy Trade-off for Stochastic Defenses
Tianlin Li
Siyue Wang
Pin-Yu Chen
Yanzhi Wang
Brian Kulis
Xue Lin
S. Chin
AAML
13
42
0
20 Aug 2019
Implicit Deep Learning
L. Ghaoui
Fangda Gu
Bertrand Travacca
Armin Askari
Alicia Y. Tsai
AI4CE
34
176
0
17 Aug 2019
Defending Against Adversarial Iris Examples Using Wavelet Decomposition
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
AAML
27
9
0
08 Aug 2019
Previous
1
2
3
4
5
6
7
8
Next