Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.07263
Cited By
Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods
20 May 2017
Nicholas Carlini
D. Wagner
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Adversarial Examples Are Not Easily Detected: Bypassing Ten Detection Methods"
50 / 352 papers shown
Title
BlurNet: Defense by Filtering the Feature Maps
Ravi Raju
Mikko H. Lipasti
AAML
39
15
0
06 Aug 2019
Impact of Adversarial Examples on Deep Learning Models for Biomedical Image Segmentation
Utku Ozbulak
Arnout Van Messem
W. D. Neve
MedIm
AAML
20
60
0
30 Jul 2019
Natural Adversarial Examples
Dan Hendrycks
Kevin Zhao
Steven Basart
Jacob Steinhardt
D. Song
OODD
86
1,422
0
16 Jul 2019
Metamorphic Detection of Adversarial Examples in Deep Learning Models With Affine Transformations
R. Mekala
Gudjon Magnusson
Adam A. Porter
Mikael Lindvall
Madeline Diep
AAML
6
16
0
10 Jul 2019
Detecting and Diagnosing Adversarial Images with Class-Conditional Capsule Reconstructions
Yao Qin
Nicholas Frosst
S. Sabour
Colin Raffel
G. Cottrell
Geoffrey E. Hinton
GAN
AAML
19
71
0
05 Jul 2019
Minimally distorted Adversarial Examples with a Fast Adaptive Boundary Attack
Francesco Croce
Matthias Hein
AAML
43
474
0
03 Jul 2019
Adversarial Examples to Fool Iris Recognition Systems
Sobhan Soleymani
Ali Dabouei
J. Dawson
Nasser M. Nasrabadi
GAN
AAML
16
16
0
21 Jun 2019
Machine Learning Testing: Survey, Landscapes and Horizons
Jie M. Zhang
Mark Harman
Lei Ma
Yang Liu
VLM
AILaw
39
739
0
19 Jun 2019
Robust or Private? Adversarial Training Makes Models More Vulnerable to Privacy Attacks
Felipe A. Mejia
Paul Gamble
Z. Hampel-Arias
M. Lomnitz
Nina Lopatina
Lucas Tindall
M. Barrios
SILM
27
18
0
15 Jun 2019
A Computationally Efficient Method for Defending Adversarial Deep Learning Attacks
R. Sahay
Rehana Mahfuz
Aly El Gamal
AAML
22
5
0
13 Jun 2019
Provably Robust Deep Learning via Adversarially Trained Smoothed Classifiers
Hadi Salman
Greg Yang
Jungshian Li
Pengchuan Zhang
Huan Zhang
Ilya P. Razenshteyn
Sébastien Bubeck
AAML
33
536
0
09 Jun 2019
ML-LOO: Detecting Adversarial Examples with Feature Attribution
Puyudi Yang
Jianbo Chen
Cho-Jui Hsieh
Jane-ling Wang
Michael I. Jordan
AAML
22
101
0
08 Jun 2019
Enhancing Gradient-based Attacks with Symbolic Intervals
Shiqi Wang
Yizheng Chen
Ahmed Abdou
Suman Jana
AAML
28
15
0
05 Jun 2019
Bypassing Backdoor Detection Algorithms in Deep Learning
T. Tan
Reza Shokri
FedML
AAML
39
149
0
31 May 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
16
77
0
27 May 2019
Taking Care of The Discretization Problem: A Comprehensive Study of the Discretization Problem and A Black-Box Adversarial Attack in Discrete Integer Domain
Lei Bu
Yuchao Duan
Fu Song
Zhe Zhao
AAML
32
18
0
19 May 2019
What Do Adversarially Robust Models Look At?
Takahiro Itazuri
Yoshihiro Fukuhara
Hirokatsu Kataoka
Shigeo Morishima
19
5
0
19 May 2019
AI Enabling Technologies: A Survey
V. Gadepally
Justin A. Goodwin
J. Kepner
Albert Reuther
Hayley Reynolds
S. Samsi
Jonathan Su
David Martinez
27
24
0
08 May 2019
Test Selection for Deep Learning Systems
Wei Ma
Mike Papadakis
Anestis Tsakmalis
Maxime Cordy
Yves Le Traon
OOD
21
92
0
30 Apr 2019
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
19
35
0
12 Apr 2019
A Target-Agnostic Attack on Deep Models: Exploiting Security Vulnerabilities of Transfer Learning
Shahbaz Rezaei
Xin Liu
SILM
AAML
33
46
0
08 Apr 2019
Interpreting Adversarial Examples by Activation Promotion and Suppression
Kaidi Xu
Sijia Liu
Gaoyuan Zhang
Mengshu Sun
Pu Zhao
Quanfu Fan
Chuang Gan
X. Lin
AAML
FAtt
24
43
0
03 Apr 2019
Scaling up the randomized gradient-free adversarial attack reveals overestimation of robustness using established attacks
Francesco Croce
Jonas Rauber
Matthias Hein
AAML
20
30
0
27 Mar 2019
Detecting Overfitting via Adversarial Examples
Roman Werpachowski
András Gyorgy
Csaba Szepesvári
TDI
26
45
0
06 Mar 2019
Attacking Graph-based Classification via Manipulating the Graph Structure
Binghui Wang
Neil Zhenqiang Gong
AAML
28
152
0
01 Mar 2019
Quantifying Perceptual Distortion of Adversarial Examples
Matt Jordan
N. Manoj
Surbhi Goel
A. Dimakis
19
39
0
21 Feb 2019
The Odds are Odd: A Statistical Test for Detecting Adversarial Examples
Kevin Roth
Yannic Kilcher
Thomas Hofmann
AAML
27
175
0
13 Feb 2019
Certified Adversarial Robustness via Randomized Smoothing
Jeremy M. Cohen
Elan Rosenfeld
J. Zico Kolter
AAML
17
1,992
0
08 Feb 2019
A New Family of Neural Networks Provably Resistant to Adversarial Attacks
Rakshit Agrawal
Luca de Alfaro
D. Helmbold
AAML
OOD
27
2
0
01 Feb 2019
Adversarial Examples Are a Natural Consequence of Test Error in Noise
Nic Ford
Justin Gilmer
Nicholas Carlini
E. D. Cubuk
AAML
27
318
0
29 Jan 2019
Using Pre-Training Can Improve Model Robustness and Uncertainty
Dan Hendrycks
Kimin Lee
Mantas Mazeika
NoLa
34
719
0
28 Jan 2019
Improving Adversarial Robustness via Promoting Ensemble Diversity
Tianyu Pang
Kun Xu
Chao Du
Ning Chen
Jun Zhu
AAML
41
434
0
25 Jan 2019
Extending Adversarial Attacks and Defenses to Deep 3D Point Cloud Classifiers
Daniel Liu
Ronald Yu
Hao Su
3DPC
34
165
0
10 Jan 2019
Adversarial Examples Versus Cloud-based Detectors: A Black-box Empirical Study
Xurong Li
S. Ji
Men Han
Juntao Ji
Zhenyu Ren
Yushan Liu
Chunming Wu
AAML
21
31
0
04 Jan 2019
A Multiversion Programming Inspired Approach to Detecting Audio Adversarial Examples
Qiang Zeng
Jianhai Su
Chenglong Fu
Golam Kayas
Lannan Luo
AAML
24
46
0
26 Dec 2018
Why ReLU networks yield high-confidence predictions far away from the training data and how to mitigate the problem
Matthias Hein
Maksym Andriushchenko
Julian Bitterwolf
OODD
46
552
0
13 Dec 2018
Learning Transferable Adversarial Examples via Ghost Networks
Yingwei Li
S. Bai
Yuyin Zhou
Cihang Xie
Zhishuai Zhang
Alan Yuille
AAML
39
136
0
09 Dec 2018
Random Spiking and Systematic Evaluation of Defenses Against Adversarial Examples
Huangyi Ge
Sze Yiu Chau
Bruno Ribeiro
Ninghui Li
AAML
27
1
0
05 Dec 2018
Interpretable Deep Learning under Fire
Xinyang Zhang
Ningfei Wang
Hua Shen
S. Ji
Xiapu Luo
Ting Wang
AAML
AI4CE
22
169
0
03 Dec 2018
SentiNet: Detecting Localized Universal Attacks Against Deep Learning Systems
Edward Chou
Florian Tramèr
Giancarlo Pellegrino
AAML
170
287
0
02 Dec 2018
A randomized gradient-free attack on ReLU networks
Francesco Croce
Matthias Hein
AAML
37
21
0
28 Nov 2018
AdVersarial: Perceptual Ad Blocking meets Adversarial Machine Learning
K. Makarychev
Pascal Dupré
Yury Makarychev
Giancarlo Pellegrino
Dan Boneh
AAML
29
64
0
08 Nov 2018
MixTrain: Scalable Training of Verifiably Robust Neural Networks
Yue Zhang
Yizheng Chen
Ahmed Abdou
Mohsen Guizani
AAML
21
23
0
06 Nov 2018
On Extensions of CLEVER: A Neural Network Robustness Evaluation Algorithm
Tsui-Wei Weng
Huan Zhang
Pin-Yu Chen
A. Lozano
Cho-Jui Hsieh
Luca Daniel
28
10
0
19 Oct 2018
Characterizing Adversarial Examples Based on Spatial Consistency Information for Semantic Segmentation
Chaowei Xiao
Ruizhi Deng
Bo-wen Li
Feng Yu
M. Liu
D. Song
AAML
16
99
0
11 Oct 2018
What made you do this? Understanding black-box decisions with sufficient input subsets
Brandon Carter
Jonas W. Mueller
Siddhartha Jain
David K Gifford
FAtt
37
77
0
09 Oct 2018
Detecting DGA domains with recurrent neural networks and side information
Ryan R. Curtin
Andrew B. Gardner
Slawomir Grzonkowski
A. Kleymenov
Alejandro Mosquera
AAML
6
64
0
04 Oct 2018
Adv-BNN: Improved Adversarial Defense through Robust Bayesian Neural Network
Xuanqing Liu
Yao Li
Chongruo Wu
Cho-Jui Hsieh
AAML
OOD
24
171
0
01 Oct 2018
Procedural Noise Adversarial Examples for Black-Box Attacks on Deep Convolutional Networks
Kenneth T. Co
Luis Muñoz-González
Sixte de Maupeou
Emil C. Lupu
AAML
22
67
0
30 Sep 2018
On The Utility of Conditional Generation Based Mutual Information for Characterizing Adversarial Subspaces
Chia-Yi Hsu
Pei-Hsuan Lu
Pin-Yu Chen
Chia-Mu Yu
AAML
30
1
0
24 Sep 2018
Previous
1
2
3
4
5
6
7
8
Next