ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.07565
  4. Cited By
Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain
  Surgeon
v1v2 (latest)

Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon

22 May 2017
Xin Luna Dong
Shangyu Chen
Sinno Jialin Pan
ArXiv (abs)PDFHTML

Papers citing "Learning to Prune Deep Neural Networks via Layer-wise Optimal Brain Surgeon"

50 / 275 papers shown
Title
Pruning neural networks without any data by iteratively conserving
  synaptic flow
Pruning neural networks without any data by iteratively conserving synaptic flowNeural Information Processing Systems (NeurIPS), 2025
Hidenori Tanaka
D. Kunin
Daniel L. K. Yamins
Surya Ganguli
362
692
0
09 Jun 2020
A Framework for Neural Network Pruning Using Gibbs Distributions
A Framework for Neural Network Pruning Using Gibbs DistributionsGlobal Communications Conference (GLOBECOM), 2021
Alex Labach
S. Valaee
82
5
0
08 Jun 2020
An Overview of Neural Network Compression
An Overview of Neural Network Compression
James OÑeill
AI4CE
217
105
0
05 Jun 2020
Weight Pruning via Adaptive Sparsity Loss
Weight Pruning via Adaptive Sparsity Loss
George Retsinas
Athena Elafrou
G. Goumas
Petros Maragos
90
10
0
04 Jun 2020
On the Transferability of Winning Tickets in Non-Natural Image Datasets
On the Transferability of Winning Tickets in Non-Natural Image Datasets
M. Sabatelli
M. Kestemont
Pierre Geurts
96
16
0
11 May 2020
Compact Neural Representation Using Attentive Network Pruning
Compact Neural Representation Using Attentive Network Pruning
Mahdi Biparva
John K. Tsotsos
CVBM
52
1
0
10 May 2020
Dependency Aware Filter Pruning
Dependency Aware Filter Pruning
Kai Zhao
Xinyu Zhang
Qi Han
Ming-Ming Cheng
72
3
0
06 May 2020
WoodFisher: Efficient Second-Order Approximation for Neural Network
  Compression
WoodFisher: Efficient Second-Order Approximation for Neural Network Compression
Sidak Pal Singh
Dan Alistarh
119
28
0
29 Apr 2020
Convolution-Weight-Distribution Assumption: Rethinking the Criteria of
  Channel Pruning
Convolution-Weight-Distribution Assumption: Rethinking the Criteria of Channel PruningNeural Information Processing Systems (NeurIPS), 2025
Zhongzhan Huang
Wenqi Shao
Xinjiang Wang
Liang Lin
Ping Luo
115
60
0
24 Apr 2020
Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies
Anchor & Transform: Learning Sparse Embeddings for Large Vocabularies
Paul Pu Liang
Manzil Zaheer
Yuan Wang
Amr Ahmed
BDL
163
1
0
18 Mar 2020
Robust Pruning at Initialization
Robust Pruning at Initialization
Soufiane Hayou
Jean-François Ton
Arnaud Doucet
Yee Whye Teh
84
47
0
19 Feb 2020
Identifying Critical Neurons in ANN Architectures using Mixed Integer
  Programming
Identifying Critical Neurons in ANN Architectures using Mixed Integer Programming
M. Elaraby
Guy Wolf
Margarida Carvalho
77
5
0
17 Feb 2020
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
Sejun Park
Jaeho Lee
Sangwoo Mo
Jinwoo Shin
88
97
0
12 Feb 2020
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Proving the Lottery Ticket Hypothesis: Pruning is All You Need
Eran Malach
Gilad Yehudai
Shai Shalev-Shwartz
Ohad Shamir
220
295
0
03 Feb 2020
Filter Sketch for Network Pruning
Filter Sketch for Network Pruning
Mingbao Lin
Liujuan Cao
Shaojie Li
QiXiang Ye
Yonghong Tian
Jianzhuang Liu
Q. Tian
Rongrong Ji
CLIP3DPC
188
88
0
23 Jan 2020
Pruning Convolutional Neural Networks with Self-Supervision
Pruning Convolutional Neural Networks with Self-Supervision
Mathilde Caron
Ari S. Morcos
Piotr Bojanowski
Julien Mairal
Armand Joulin
SSL3DPC
77
12
0
10 Jan 2020
Domain Adaptation Regularization for Spectral Pruning
Domain Adaptation Regularization for Spectral Pruning
Laurent Dillard
Yosuke Shinya
Taiji Suzuki
95
1
0
26 Dec 2019
DBP: Discrimination Based Block-Level Pruning for Deep Model
  Acceleration
DBP: Discrimination Based Block-Level Pruning for Deep Model Acceleration
Wenxiao Wang
Shuai Zhao
Minghao Chen
Jinming Hu
Deng Cai
Haifeng Liu
112
39
0
21 Dec 2019
Few Shot Network Compression via Cross Distillation
Few Shot Network Compression via Cross Distillation
Haoli Bai
Jiaxiang Wu
Irwin King
Michael Lyu
FedML
137
62
0
21 Nov 2019
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural
  Networks
SiPPing Neural Networks: Sensitivity-informed Provable Pruning of Neural Networks
Cenk Baykal
Lucas Liebenwein
Igor Gilitschenski
Dan Feldman
Daniela Rus
144
19
0
11 Oct 2019
Differentiable Sparsification for Deep Neural Networks
Differentiable Sparsification for Deep Neural Networks
Yognjin Lee
156
7
0
08 Oct 2019
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
Global Sparse Momentum SGD for Pruning Very Deep Neural Networks
Xiaohan Ding
Guiguang Ding
Xiangxin Zhou
Yuchen Guo
Jungong Han
Ji Liu
200
171
0
27 Sep 2019
Class-dependent Compression of Deep Neural Networks
Class-dependent Compression of Deep Neural Networks
R. Entezari
O. Saukh
134
7
0
23 Sep 2019
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field
  Approximation
Dissecting Non-Vacuous Generalization Bounds based on the Mean-Field Approximation
Konstantinos Pitas
122
8
0
06 Sep 2019
Sparse Networks from Scratch: Faster Training without Losing Performance
Sparse Networks from Scratch: Faster Training without Losing Performance
Tim Dettmers
Luke Zettlemoyer
233
348
0
10 Jul 2019
Data-Independent Neural Pruning via Coresets
Data-Independent Neural Pruning via Coresets
Ben Mussay
Margarita Osadchy
Vladimir Braverman
Samson Zhou
Dan Feldman
151
60
0
09 Jul 2019
Non-Structured DNN Weight Pruning -- Is It Beneficial in Any Platform?
Non-Structured DNN Weight Pruning -- Is It Beneficial in Any Platform?
Xiaolong Ma
Sheng Lin
Shaokai Ye
Zhezhi He
Linfeng Zhang
...
Deliang Fan
Xuehai Qian
Xinyu Lin
Kaisheng Ma
Yanzhi Wang
MQ
187
97
0
03 Jul 2019
COP: Customized Deep Model Compression via Regularized Correlation-Based
  Filter-Level Pruning
COP: Customized Deep Model Compression via Regularized Correlation-Based Filter-Level Pruning
Wenxiao Wang
Cong Fu
Jishun Guo
Deng Cai
Xiaofei He
VLM
87
74
0
25 Jun 2019
Taxonomy of Saliency Metrics for Channel Pruning
Taxonomy of Saliency Metrics for Channel Pruning
Kaveena Persand
Andrew Anderson
David Gregg
78
8
0
11 Jun 2019
Learning Sparse Networks Using Targeted Dropout
Learning Sparse Networks Using Targeted Dropout
Aidan Gomez
Ivan Zhang
Siddhartha Rao Kamalakara
Divyam Madaan
Kevin Swersky
Y. Gal
Geoffrey E. Hinton
251
98
0
31 May 2019
Pruning-Aware Merging for Efficient Multitask Inference
Pruning-Aware Merging for Efficient Multitask Inference
Xiaoxi He
Dawei Gao
Zimu Zhou
Yongxin Tong
Lothar Thiele
MoMe
116
9
0
23 May 2019
Revisiting hard thresholding for DNN pruning
Revisiting hard thresholding for DNN pruning
Konstantinos Pitas
Mike Davies
P. Vandergheynst
AAML
68
2
0
21 May 2019
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
EigenDamage: Structured Pruning in the Kronecker-Factored Eigenbasis
Chaoqi Wang
Roger C. Grosse
Sanja Fidler
Guodong Zhang
130
135
0
15 May 2019
SCANN: Synthesis of Compact and Accurate Neural Networks
SCANN: Synthesis of Compact and Accurate Neural Networks
Shayan Hassantabar
Zeyu Wang
N. Jha
85
40
0
19 Apr 2019
Cramnet: Layer-wise Deep Neural Network Compression with Knowledge
  Transfer from a Teacher Network
Cramnet: Layer-wise Deep Neural Network Compression with Knowledge Transfer from a Teacher Network
J. Hoffman
63
3
0
11 Apr 2019
Filter Pruning by Switching to Neighboring CNNs with Good Attributes
Filter Pruning by Switching to Neighboring CNNs with Good Attributes
Yang He
Ping Liu
Linchao Zhu
Yi Yang
VLM
105
53
0
08 Apr 2019
Adversarial Robustness vs Model Compression, or Both?
Adversarial Robustness vs Model Compression, or Both?
Shaokai Ye
Kaidi Xu
Sijia Liu
Jan-Henrik Lambrechts
Huan Zhang
Aojun Zhou
Kaisheng Ma
Yanzhi Wang
Xue Lin
AAML
165
169
0
29 Mar 2019
Progressive DNN Compression: A Key to Achieve Ultra-High Weight Pruning
  and Quantization Rates using ADMM
Progressive DNN Compression: A Key to Achieve Ultra-High Weight Pruning and Quantization Rates using ADMM
Shaokai Ye
Xiaoyu Feng
Tianyun Zhang
Xiaolong Ma
Sheng Lin
...
Jian Tang
M. Fardad
Xinyu Lin
Yongpan Liu
Yanzhi Wang
MQ
137
38
0
23 Mar 2019
Stabilizing the Lottery Ticket Hypothesis
Stabilizing the Lottery Ticket Hypothesis
Jonathan Frankle
Gintare Karolina Dziugaite
Daniel M. Roy
Michael Carbin
118
103
0
05 Mar 2019
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using
  Alternating Direction Method of Multipliers
ADMM-NN: An Algorithm-Hardware Co-Design Framework of DNNs Using Alternating Direction Method of Multipliers
Ao Ren
Tianyun Zhang
Shaokai Ye
Jiayu Li
Wenyao Xu
Xuehai Qian
Xinyu Lin
Yanzhi Wang
MQ
138
165
0
31 Dec 2018
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete
  Demonstrations of Algorithmic Effectiveness in the Machine Learning and
  Artificial Intelligence Literature
NIPS - Not Even Wrong? A Systematic Review of Empirically Complete Demonstrations of Algorithmic Effectiveness in the Machine Learning and Artificial Intelligence Literature
Franz J. Király
Bilal A. Mateen
R. Sonabend
133
10
0
18 Dec 2018
A Main/Subsidiary Network Framework for Simplifying Binary Neural
  Network
A Main/Subsidiary Network Framework for Simplifying Binary Neural Network
Yinghao Xu
Xin Dong
Yudian Li
Hao Su
83
30
0
11 Dec 2018
Stochastic Model Pruning via Weight Dropping Away and Back
Stochastic Model Pruning via Weight Dropping Away and Back
Haipeng Jia
Xueshuang Xiang
Da Fan
Meiyu Huang
Changhao Sun
Yang He
55
3
0
05 Dec 2018
Efficient Structured Pruning and Architecture Searching for Group
  Convolution
Efficient Structured Pruning and Architecture Searching for Group Convolution
Ruizhe Zhao
Wayne Luk
170
17
0
23 Nov 2018
Fast On-the-fly Retraining-free Sparsification of Convolutional Neural
  Networks
Fast On-the-fly Retraining-free Sparsification of Convolutional Neural Networks
Amir H. Ashouri
T. Abdelrahman
Alwyn Dos Remedios
MQ
145
13
0
10 Nov 2018
Filter Pruning via Geometric Median for Deep Convolutional Neural
  Networks Acceleration
Filter Pruning via Geometric Median for Deep Convolutional Neural Networks Acceleration
Yang He
Ping Liu
Ziwei Wang
Zhilan Hu
Yi Yang
AAML3DPC
221
1,100
0
01 Nov 2018
Progressive Weight Pruning of Deep Neural Networks using ADMM
Progressive Weight Pruning of Deep Neural Networks using ADMM
Shaokai Ye
Tianyun Zhang
Kaiqi Zhang
Jiayu Li
Kaidi Xu
...
M. Fardad
Sijia Liu
Xiang Chen
Xinyu Lin
Yanzhi Wang
AI4CE
148
39
0
17 Oct 2018
Rate Distortion For Model Compression: From Theory To Practice
Rate Distortion For Model Compression: From Theory To Practice
Weihao Gao
Yu-Han Liu
Chong-Jun Wang
Sewoong Oh
144
33
0
09 Oct 2018
SNIP: Single-shot Network Pruning based on Connection Sensitivity
SNIP: Single-shot Network Pruning based on Connection Sensitivity
Namhoon Lee
Thalaiyasingam Ajanthan
Juil Sock
VLM
513
1,277
0
04 Oct 2018
Characterising Across-Stack Optimisations for Deep Convolutional Neural
  Networks
Characterising Across-Stack Optimisations for Deep Convolutional Neural Networks
Jack Turner
José Cano
Valentin Radu
Elliot J. Crowley
Michael F. P. O'Boyle
Amos Storkey
74
40
0
19 Sep 2018
Previous
123456
Next