ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08933
  4. Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes
v1v2 (latest)

Doubly Stochastic Variational Inference for Deep Gaussian Processes

24 May 2017
Hugh Salimbeni
M. Deisenroth
    BDLGP
ArXiv (abs)PDFHTML

Papers citing "Doubly Stochastic Variational Inference for Deep Gaussian Processes"

50 / 238 papers shown
A comparison of machine learning surrogate models of street-scale
  flooding in Norfolk, Virginia
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, VirginiaMachine Learning with Applications (MLWA), 2023
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
137
9
0
26 Jul 2023
Adaptive Robotic Information Gathering via Non-Stationary Gaussian
  Processes
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
372
14
0
02 Jun 2023
Linked Deep Gaussian Process Emulation for Model Networks
Linked Deep Gaussian Process Emulation for Model Networks
Deyu Ming
D. Williamson
196
0
0
02 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural NetworksInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Felix Jimenez
Matthias Katzfuss
BDLUQCV
353
1
0
26 May 2023
Distribution-Free Model-Agnostic Regression Calibration via
  Nonparametric Methods
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric MethodsNeural Information Processing Systems (NeurIPS), 2023
Shang Liu
Zhongze Cai
Xiaocheng Li
197
6
0
20 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design
  and Health Prognostics: A Tutorial
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A TutorialMechanical systems and signal processing (MSSP), 2023
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
282
125
0
07 May 2023
Actually Sparse Variational Gaussian Processes
Actually Sparse Variational Gaussian ProcessesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
251
8
0
11 Apr 2023
Calibrating Transformers via Sparse Gaussian Processes
Calibrating Transformers via Sparse Gaussian ProcessesInternational Conference on Learning Representations (ICLR), 2023
Wenlong Chen
Yingzhen Li
UQCV
619
15
0
04 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian
  Gaussian Processes
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
146
4
0
03 Mar 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
Variational Linearized Laplace Approximation for Bayesian Deep LearningInternational Conference on Machine Learning (ICML), 2023
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDLUQCV
448
6
0
24 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
Free-Form Variational Inference for Gaussian Process State-Space ModelsInternational Conference on Machine Learning (ICML), 2023
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
235
11
0
20 Feb 2023
Guided Deep Kernel Learning
Guided Deep Kernel LearningConference on Uncertainty in Artificial Intelligence (UAI), 2023
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
306
7
0
19 Feb 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with
  TensorFlow
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
225
23
0
16 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
Fully Bayesian Autoencoders with Latent Sparse Gaussian ProcessesInternational Conference on Machine Learning (ICML), 2023
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDaBDLUQCV
225
7
0
09 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space
  Model
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
382
7
0
21 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
303
4
0
20 Jan 2023
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
Gaussian Process Latent Variable Modeling for Few-shot Time Series ForecastingIEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
303
1
0
20 Dec 2022
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated
  Classification
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated Classification
Alan Q. Wang
M. Sabuncu
236
6
0
07 Dec 2022
Deep Gaussian Processes for Air Quality Inference
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
123
3
0
18 Nov 2022
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep
  Gaussian Process (iTDGP)
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian Process (iTDGP)
Mohsen Soltanpour
Muhammad Yousefnezhad
Russ Greiner
Pierre Boulanger
B. Buck
44
2
0
16 Nov 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?Neural Information Processing Systems (NeurIPS), 2022
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
173
8
0
04 Nov 2022
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse
  Dynamics
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse DynamicsIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
194
2
0
02 Nov 2022
Joint control variate for faster black-box variational inference
Joint control variate for faster black-box variational inferenceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Xi Wang
Tomas Geffner
Justin Domke
BDLDRL
296
0
0
13 Oct 2022
Computationally-efficient initialisation of GPs: The generalised
  variogram method
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
214
0
0
11 Oct 2022
Bézier Gaussian Processes for Tall and Wide Data
Bézier Gaussian Processes for Tall and Wide DataNeural Information Processing Systems (NeurIPS), 2022
Martin Jørgensen
Michael A. Osborne
GP
341
2
0
01 Sep 2022
Nonparametric Factor Trajectory Learning for Dynamic Tensor
  Decomposition
Nonparametric Factor Trajectory Learning for Dynamic Tensor DecompositionInternational Conference on Machine Learning (ICML), 2022
Liang Luo
Shandian Zhe
74
7
0
06 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution
  Detection
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
281
1
0
27 Jun 2022
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Thomas M. McDonald
M. Ross
M. Smith
Mauricio A. Alvarez
143
1
0
17 Jun 2022
Photoelectric Factor Prediction Using Automated Learning and Uncertainty
  Quantification
Photoelectric Factor Prediction Using Automated Learning and Uncertainty Quantification
K. Alsamadony
A. Ibrahim
S. Elkatatny
A. Abdulraheem
101
2
0
17 Jun 2022
Deep Variational Implicit Processes
Deep Variational Implicit ProcessesInternational Conference on Learning Representations (ICLR), 2022
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
217
6
0
14 Jun 2022
Scalable Deep Gaussian Markov Random Fields for General Graphs
Scalable Deep Gaussian Markov Random Fields for General GraphsInternational Conference on Machine Learning (ICML), 2022
Joel Oskarsson
Per Sidén
Fredrik Lindsten
BDL
148
5
0
10 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Multi-fidelity Hierarchical Neural ProcessesKnowledge Discovery and Data Mining (KDD), 2022
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
187
19
0
10 Jun 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Statistical Deep Learning for Spatial and Spatio-Temporal DataAnnual Review of Statistics and Its Application (ARSIA), 2022
C. Wikle
A. Zammit‐Mangion
BDL
275
59
0
05 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent
  Multi-class Classification
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class ClassificationInternational Conference on Machine Learning (ICML), 2022
Juan Maroñas
Daniel Hernández-Lobato
321
8
0
30 May 2022
AK: Attentive Kernel for Information Gathering
AK: Attentive Kernel for Information Gathering
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
322
16
0
13 May 2022
Modelling calibration uncertainty in networks of environmental sensors
Modelling calibration uncertainty in networks of environmental sensors
M. Smith
M. Ross
Joel Ssematimba
Pablo A. Alvarado
Mauricio A. Alvarez
Engineer Bainomugisha
R. Wilkinson
93
6
0
04 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-AwarenessJournal of machine learning research (JMLR), 2022
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCVBDL
487
64
0
01 May 2022
A piece-wise constant approximation for non-conjugate Gaussian Process
  models
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
84
0
0
22 Apr 2022
Gaussian Processes for Missing Value Imputation
Gaussian Processes for Missing Value ImputationKnowledge-Based Systems (KBS), 2022
B. Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián López
Isabel Benavente-Fernández
GP
169
26
0
10 Apr 2022
Vecchia-approximated Deep Gaussian Processes for Computer Experiments
Vecchia-approximated Deep Gaussian Processes for Computer ExperimentsJournal of Computational And Graphical Statistics (JCGS), 2022
Annie Sauer
A. Cooper
R. Gramacy
324
48
0
06 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
Hybrid Transfer in Deep Reinforcement Learning for Ads AllocationInternational Conference on Information and Knowledge Management (CIKM), 2022
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Wei Shen
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
202
7
0
02 Apr 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes:
  Covariance, Expressivity, and Neural Tangent Kernel
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
335
1
0
14 Mar 2022
Generalised Gaussian Process Latent Variable Models (GPLVM) with
  Stochastic Variational Inference
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
V. Lalchand
Aditya Ravuri
Neil D. Lawrence
GPVLM
211
6
0
25 Feb 2022
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Confident Neural Network Regression with Bootstrapped Deep EnsemblesNeurocomputing (Neurocomputing), 2022
Laurens Sluijterman
Eric Cator
Tom Heskes
BDLUQCVFedML
216
2
0
22 Feb 2022
Triangulation candidates for Bayesian optimization
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
305
18
0
14 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in
  density estimation and classication
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
205
5
0
14 Dec 2021
A Sparse Expansion For Deep Gaussian Processes
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
191
8
0
11 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
Geometry-Aware Hierarchical Bayesian Learning on ManifoldsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Yonghui Fan
Yalin Wang
219
2
0
30 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse
  Precision Matrices
Variational Bayesian Approximation of Inverse Problems using Sparse Precision MatricesComputer Methods in Applied Mechanics and Engineering (CMAME), 2021
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
291
30
0
22 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDLUQCV
154
7
0
21 Oct 2021
Previous
12345
Next
Page 2 of 5