Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1705.08933
Cited By
v1
v2 (latest)
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 238 papers shown
A comparison of machine learning surrogate models of street-scale flooding in Norfolk, Virginia
Machine Learning with Applications (MLWA), 2023
Diana McSpadden
S. Goldenberg
Bina Roy
M. Schram
J. Goodall
H. Lipford
AI4CE
137
9
0
26 Jul 2023
Adaptive Robotic Information Gathering via Non-Stationary Gaussian Processes
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
372
14
0
02 Jun 2023
Linked Deep Gaussian Process Emulation for Model Networks
Deyu Ming
D. Williamson
196
0
0
02 Jun 2023
Vecchia Gaussian Process Ensembles on Internal Representations of Deep Neural Networks
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Felix Jimenez
Matthias Katzfuss
BDL
UQCV
353
1
0
26 May 2023
Distribution-Free Model-Agnostic Regression Calibration via Nonparametric Methods
Neural Information Processing Systems (NeurIPS), 2023
Shang Liu
Zhongze Cai
Xiaocheng Li
197
6
0
20 May 2023
Uncertainty Quantification in Machine Learning for Engineering Design and Health Prognostics: A Tutorial
Mechanical systems and signal processing (MSSP), 2023
V. Nemani
Luca Biggio
Xun Huan
Zhen Hu
Olga Fink
Anh Tran
Yan Wang
Xiaoge Zhang
Chao Hu
AI4CE
282
125
0
07 May 2023
Actually Sparse Variational Gaussian Processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2023
Harry Jake Cunningham
Daniel Augusto R. M. A. de Souza
So Takao
Mark van der Wilk
M. Deisenroth
251
8
0
11 Apr 2023
Calibrating Transformers via Sparse Gaussian Processes
International Conference on Learning Representations (ICLR), 2023
Wenlong Chen
Yingzhen Li
UQCV
619
15
0
04 Mar 2023
Learning Energy Conserving Dynamics Efficiently with Hamiltonian Gaussian Processes
M. Ross
Markus Heinonen
146
4
0
03 Mar 2023
Variational Linearized Laplace Approximation for Bayesian Deep Learning
International Conference on Machine Learning (ICML), 2023
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
UQCV
448
6
0
24 Feb 2023
Free-Form Variational Inference for Gaussian Process State-Space Models
International Conference on Machine Learning (ICML), 2023
Xuhui Fan
Edwin V. Bonilla
T. O’Kane
Scott A. Sisson
235
11
0
20 Feb 2023
Guided Deep Kernel Learning
Conference on Uncertainty in Artificial Intelligence (UAI), 2023
Idan Achituve
Gal Chechik
Ethan Fetaya
BDL
306
7
0
19 Feb 2023
Trieste: Efficiently Exploring The Depths of Black-box Functions with TensorFlow
Victor Picheny
Joel Berkeley
Henry B. Moss
Hrvoje Stojić
Uri Granta
...
Sergio Pascual-Diaz
Stratis Markou
Jixiang Qing
Nasrulloh Loka
Ivo Couckuyt
225
23
0
16 Feb 2023
Fully Bayesian Autoencoders with Latent Sparse Gaussian Processes
International Conference on Machine Learning (ICML), 2023
Ba-Hien Tran
Babak Shahbaba
Stephan Mandt
Maurizio Filippone
SyDa
BDL
UQCV
225
7
0
09 Feb 2023
Towards Flexibility and Interpretability of Gaussian Process State-Space Model
Zhidi Lin
Feng Yin
Juan Maroñas
382
7
0
21 Jan 2023
Active Learning of Piecewise Gaussian Process Surrogates
Chiwoo Park
R. Waelder
Bonggwon Kang
Benji Maruyama
Soondo Hong
R. Gramacy
GP
303
4
0
20 Jan 2023
Gaussian Process Latent Variable Modeling for Few-shot Time Series Forecasting
IEEE Transactions on Knowledge and Data Engineering (TKDE), 2022
Yunyao Cheng
Chenjuan Guo
Kai Chen
Kai Zhao
B. Yang
Jiandong Xie
Christian S. Jensen
Feiteng Huang
Kai Zheng
AI4TS
303
1
0
20 Dec 2022
A Flexible Nadaraya-Watson Head Can Offer Explainable and Calibrated Classification
Alan Q. Wang
M. Sabuncu
236
6
0
07 Dec 2022
Deep Gaussian Processes for Air Quality Inference
Aadesh Desai
Eshan Gujarathi
Saagar Parikh
Sachin Yadav
Zeel B Patel
Nipun Batra
123
3
0
18 Nov 2022
Ischemic Stroke Lesion Prediction using imbalanced Temporal Deep Gaussian Process (iTDGP)
Mohsen Soltanpour
Muhammad Yousefnezhad
Russ Greiner
Pierre Boulanger
B. Buck
44
2
0
16 Nov 2022
Sparse Gaussian Process Hyperparameters: Optimize or Integrate?
Neural Information Processing Systems (NeurIPS), 2022
V. Lalchand
W. Bruinsma
David R. Burt
C. Rasmussen
GP
173
8
0
04 Nov 2022
Variational Hierarchical Mixtures for Probabilistic Learning of Inverse Dynamics
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2022
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
194
2
0
02 Nov 2022
Joint control variate for faster black-box variational inference
International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Xi Wang
Tomas Geffner
Justin Domke
BDL
DRL
296
0
0
13 Oct 2022
Computationally-efficient initialisation of GPs: The generalised variogram method
Felipe A. Tobar
Elsa Cazelles
T. Wolff
214
0
0
11 Oct 2022
Bézier Gaussian Processes for Tall and Wide Data
Neural Information Processing Systems (NeurIPS), 2022
Martin Jørgensen
Michael A. Osborne
GP
341
2
0
01 Sep 2022
Nonparametric Factor Trajectory Learning for Dynamic Tensor Decomposition
International Conference on Machine Learning (ICML), 2022
Liang Luo
Shandian Zhe
74
7
0
06 Jul 2022
Distributional Gaussian Processes Layers for Out-of-Distribution Detection
S. Popescu
D. Sharp
James H. Cole
Konstantinos Kamnitsas
Ben Glocker
OOD
281
1
0
27 Jun 2022
Shallow and Deep Nonparametric Convolutions for Gaussian Processes
Thomas M. McDonald
M. Ross
M. Smith
Mauricio A. Alvarez
143
1
0
17 Jun 2022
Photoelectric Factor Prediction Using Automated Learning and Uncertainty Quantification
K. Alsamadony
A. Ibrahim
S. Elkatatny
A. Abdulraheem
101
2
0
17 Jun 2022
Deep Variational Implicit Processes
International Conference on Learning Representations (ICLR), 2022
Luis A. Ortega
Simón Rodríguez Santana
Daniel Hernández-Lobato
BDL
217
6
0
14 Jun 2022
Scalable Deep Gaussian Markov Random Fields for General Graphs
International Conference on Machine Learning (ICML), 2022
Joel Oskarsson
Per Sidén
Fredrik Lindsten
BDL
148
5
0
10 Jun 2022
Multi-fidelity Hierarchical Neural Processes
Knowledge Discovery and Data Mining (KDD), 2022
D. Wu
Matteo Chinazzi
Alessandro Vespignani
Yi-An Ma
Rose Yu
AI4CE
187
19
0
10 Jun 2022
Statistical Deep Learning for Spatial and Spatio-Temporal Data
Annual Review of Statistics and Its Application (ARSIA), 2022
C. Wikle
A. Zammit‐Mangion
BDL
275
59
0
05 Jun 2022
Efficient Transformed Gaussian Processes for Non-Stationary Dependent Multi-class Classification
International Conference on Machine Learning (ICML), 2022
Juan Maroñas
Daniel Hernández-Lobato
321
8
0
30 May 2022
AK: Attentive Kernel for Information Gathering
Weizhe (Wesley) Chen
Roni Khardon
Lantao Liu
322
16
0
13 May 2022
Modelling calibration uncertainty in networks of environmental sensors
M. Smith
M. Ross
Joel Ssematimba
Pablo A. Alvarado
Mauricio A. Alvarez
Engineer Bainomugisha
R. Wilkinson
93
6
0
04 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
Journal of machine learning research (JMLR), 2022
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
487
64
0
01 May 2022
A piece-wise constant approximation for non-conjugate Gaussian Process models
Sarem Seitz
84
0
0
22 Apr 2022
Gaussian Processes for Missing Value Imputation
Knowledge-Based Systems (KBS), 2022
B. Jafrasteh
Daniel Hernández-Lobato
Simón Pedro Lubián López
Isabel Benavente-Fernández
GP
169
26
0
10 Apr 2022
Vecchia-approximated Deep Gaussian Processes for Computer Experiments
Journal of Computational And Graphical Statistics (JCGS), 2022
Annie Sauer
A. Cooper
R. Gramacy
324
48
0
06 Apr 2022
Hybrid Transfer in Deep Reinforcement Learning for Ads Allocation
International Conference on Information and Knowledge Management (CIKM), 2022
Zehua Wang
Guogang Liao
Xiaowen Shi
Xiaoxu Wu
Wei Shen
Bingqin Zhu
Yongkang Wang
Xingxing Wang
Dong Wang
202
7
0
02 Apr 2022
On Connecting Deep Trigonometric Networks with Deep Gaussian Processes: Covariance, Expressivity, and Neural Tangent Kernel
Chi-Ken Lu
Patrick Shafto
BDL
335
1
0
14 Mar 2022
Generalised Gaussian Process Latent Variable Models (GPLVM) with Stochastic Variational Inference
V. Lalchand
Aditya Ravuri
Neil D. Lawrence
GP
VLM
211
6
0
25 Feb 2022
Confident Neural Network Regression with Bootstrapped Deep Ensembles
Neurocomputing (Neurocomputing), 2022
Laurens Sluijterman
Eric Cator
Tom Heskes
BDL
UQCV
FedML
216
2
0
22 Feb 2022
Triangulation candidates for Bayesian optimization
R. Gramacy
Anna Sauer
Nathan Wycoff
305
18
0
14 Dec 2021
Posterior contraction rates for constrained deep Gaussian processes in density estimation and classication
François Bachoc
A. Lagnoux
205
5
0
14 Dec 2021
A Sparse Expansion For Deep Gaussian Processes
Liang Ding
Rui Tuo
Shahin Shahrampour
191
8
0
11 Dec 2021
Geometry-Aware Hierarchical Bayesian Learning on Manifolds
IEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Yonghui Fan
Yalin Wang
219
2
0
30 Oct 2021
Variational Bayesian Approximation of Inverse Problems using Sparse Precision Matrices
Computer Methods in Applied Mechanics and Engineering (CMAME), 2021
Jan Povala
Ieva Kazlauskaite
Eky Febrianto
F. Cirak
Mark Girolami
291
30
0
22 Oct 2021
Bayesian Meta-Learning Through Variational Gaussian Processes
Vivek Myers
Nikhil Sardana
BDL
UQCV
154
7
0
21 Oct 2021
Previous
1
2
3
4
5
Next
Page 2 of 5