ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.08933
  4. Cited By
Doubly Stochastic Variational Inference for Deep Gaussian Processes

Doubly Stochastic Variational Inference for Deep Gaussian Processes

24 May 2017
Hugh Salimbeni
M. Deisenroth
    BDL
    GP
ArXivPDFHTML

Papers citing "Doubly Stochastic Variational Inference for Deep Gaussian Processes"

50 / 230 papers shown
Title
Stochastic Differential Equations with Variational Wishart Diffusions
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
20
8
0
26 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
26
10
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
14
47
0
18 Jun 2020
A Deterministic Approximation to Neural SDEs
A Deterministic Approximation to Neural SDEs
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
DiffM
9
4
0
16 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the
  Predictive Uncertainties
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
C. Lippert
Barbara Rakitsch
BDL
UQCV
25
8
0
22 May 2020
Deep Latent-Variable Kernel Learning
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
17
8
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Utterance-level Sequential Modeling For Deep Gaussian Process Based
  Speech Synthesis Using Simple Recurrent Unit
Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit
Tomoki Koriyama
Hiroshi Saruwatari
BDL
21
5
0
22 Apr 2020
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Sayan Ghosh
Piyush Pandita
Steven Atkinson
W. Subber
Yiming Zhang
Natarajan Chennimalai-Kumar
S. Chakrabarti
Liping Wang
AI4CE
17
30
0
26 Mar 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in
  Electronic Health Records
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
16
36
0
23 Mar 2020
Energy-Based Processes for Exchangeable Data
Energy-Based Processes for Exchangeable Data
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
22
12
0
17 Mar 2020
Amortized variance reduction for doubly stochastic objectives
Amortized variance reduction for doubly stochastic objectives
Ayman Boustati
Sattar Vakili
J. Hensman
S. T. John
26
5
0
09 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to
  Inducing-Variable Approximations
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
16
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
40
94
0
02 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
Time Series Data Augmentation for Deep Learning: A Survey
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Xue Wang
Huan Xu
AI4TS
32
635
0
27 Feb 2020
Deep Sigma Point Processes
Deep Sigma Point Processes
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
24
21
0
21 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Estimating Uncertainty Intervals from Collaborating Networks
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
30
16
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
27
15
0
11 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Chi-Ken Lu
Patrick Shafto
19
5
0
07 Feb 2020
Transport Gaussian Processes for Regression
Transport Gaussian Processes for Regression
Gonzalo Rios
GP
21
6
0
30 Jan 2020
Doubly Sparse Variational Gaussian Processes
Doubly Sparse Variational Gaussian Processes
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
27
24
0
15 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
21
1
0
02 Jan 2020
Warped Input Gaussian Processes for Time Series Forecasting
Warped Input Gaussian Processes for Time Series Forecasting
David Tolpin
AI4TS
31
2
0
05 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch
  Detection in LIGO
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
21
14
0
05 Nov 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Implicit Posterior Variational Inference for Deep Gaussian Processes
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
19
42
0
26 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
107
3
0
15 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
32
93
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
20
7
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as
  Gaussian processes
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
27
9
0
12 Oct 2019
PAC-Bayesian Bounds for Deep Gaussian Processes
PAC-Bayesian Bounds for Deep Gaussian Processes
R. Foll
Ingo Steinwart
BDL
25
1
0
22 Sep 2019
Compositional uncertainty in deep Gaussian processes
Compositional uncertainty in deep Gaussian processes
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
28
22
0
17 Sep 2019
Deep kernel learning for integral measurements
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
37
7
0
04 Sep 2019
Structured Variational Inference in Unstable Gaussian Process State
  Space Models
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
19
4
0
16 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
29
0
0
03 Jul 2019
Multi-resolution Multi-task Gaussian Processes
Multi-resolution Multi-task Gaussian Processes
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
28
38
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process
  Models
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
41
30
0
13 Jun 2019
Deep Compositional Spatial Models
Deep Compositional Spatial Models
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
33
55
0
06 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
29
3
0
31 May 2019
Monotonic Gaussian Process Flow
Monotonic Gaussian Process Flow
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Carl Henrik Ek
Neill D. F. Campbell
8
14
0
30 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
22
5
0
29 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
24
18
0
27 May 2019
Interpretable deep Gaussian processes with moments
Interpretable deep Gaussian processes with moments
Chi-Ken Lu
Scott Cheng-Hsin Yang
Xiaoran Hao
Patrick Shafto
18
19
0
27 May 2019
Learning spectrograms with convolutional spectral kernels
Learning spectrograms with convolutional spectral kernels
Zheyan Shen
Markus Heinonen
Samuel Kaski
17
9
0
23 May 2019
Deep Gaussian Processes with Importance-Weighted Variational Inference
Deep Gaussian Processes with Importance-Weighted Variational Inference
Hugh Salimbeni
Vincent Dutordoir
J. Hensman
M. Deisenroth
BDL
23
43
0
14 May 2019
Bayesian Optimization using Deep Gaussian Processes
Bayesian Optimization using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
GP
22
69
0
07 May 2019
Robust Deep Gaussian Processes
Robust Deep Gaussian Processes
Jeremias Knoblauch
GP
22
17
0
04 Apr 2019
Generalized Variational Inference: Three arguments for deriving new
  Posteriors
Generalized Variational Inference: Three arguments for deriving new Posteriors
Jeremias Knoblauch
Jack Jewson
Theodoros Damoulas
DRL
BDL
39
105
0
03 Apr 2019
Exact Gaussian Processes on a Million Data Points
Exact Gaussian Processes on a Million Data Points
Ke Alexander Wang
Geoff Pleiss
Jacob R. Gardner
Stephen Tyree
Kilian Q. Weinberger
A. Wilson
GP
10
226
0
19 Mar 2019
Deep Gaussian Processes for Multi-fidelity Modeling
Deep Gaussian Processes for Multi-fidelity Modeling
Kurt Cutajar
Mark Pullin
Andreas C. Damianou
Neil D. Lawrence
Javier I. González
AI4CE
30
109
0
18 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
22
235
0
14 Mar 2019
Previous
12345
Next