Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1705.08933
Cited By
v1
v2 (latest)
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 238 papers shown
Doubly Stochastic Variational Inference for Neural Processes with Hierarchical Latent Variables
Q. Wang
H. V. Hoof
BDL
188
47
0
21 Aug 2020
Stochastic Bayesian Neural Networks
Abhinav Sagar
BDL
UQCV
192
1
0
12 Aug 2020
Deep State-Space Gaussian Processes
Statistics and computing (Stat. Comput.), 2020
Zheng Zhao
M. Emzir
Simo Särkkä
GP
244
20
0
11 Aug 2020
Multi-speaker Text-to-speech Synthesis Using Deep Gaussian Processes
Interspeech (Interspeech), 2020
Kentaro Mitsui
Tomoki Koriyama
Hiroshi Saruwatari
110
5
0
07 Aug 2020
State Space Expectation Propagation: Efficient Inference Schemes for Temporal Gaussian Processes
International Conference on Machine Learning (ICML), 2020
William J. Wilkinson
Paul E. Chang
Michael Riis Andersen
Arno Solin
144
15
0
12 Jul 2020
Overview of Gaussian process based multi-fidelity techniques with variable relationship between fidelities
Loïc Brevault
M. Balesdent
Ali Hebbal
176
79
0
30 Jun 2020
Sparse Gaussian Processes with Spherical Harmonic Features
Vincent Dutordoir
N. Durrande
J. Hensman
195
58
0
30 Jun 2020
Multi-fidelity modeling with different input domain definitions using Deep Gaussian Processes
Ali Hebbal
Loïc Brevault
M. Balesdent
El-Ghazali Talbi
N. Melab
AI4CE
157
41
0
29 Jun 2020
Variational Autoencoding of PDE Inverse Problems
Daniel J. Tait
Theodoros Damoulas
AI4CE
132
12
0
28 Jun 2020
Stochastic Differential Equations with Variational Wishart Diffusions
Martin Jørgensen
M. Deisenroth
Hugh Salimbeni
DiffM
136
8
0
26 Jun 2020
Likelihood-Free Inference with Deep Gaussian Processes
Alexander Aushev
Henri Pesonen
Markus Heinonen
J. Corander
Samuel Kaski
GP
261
10
0
18 Jun 2020
Calibrated Reliable Regression using Maximum Mean Discrepancy
Peng Cui
Wenbo Hu
Jun Zhu
UQCV
210
59
0
18 Jun 2020
A Deterministic Approximation to Neural SDEs
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
DiffM
527
5
0
16 Jun 2020
Beyond the Mean-Field: Structured Deep Gaussian Processes Improve the Predictive Uncertainties
J. Lindinger
David Reeb
Christoph Lippert
Barbara Rakitsch
BDL
UQCV
211
8
0
22 May 2020
Deep Latent-Variable Kernel Learning
Haitao Liu
Yew-Soon Ong
Xiaomo Jiang
Xiaofang Wang
BDL
209
9
0
18 May 2020
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
610
62
0
17 May 2020
Utterance-level Sequential Modeling For Deep Gaussian Process Based Speech Synthesis Using Simple Recurrent Unit
Tomoki Koriyama
Hiroshi Saruwatari
BDL
154
5
0
22 Apr 2020
Advances in Bayesian Probabilistic Modeling for Industrial Applications
Sayan Ghosh
Piyush Pandita
Steven Atkinson
W. Subber
Yiming Zhang
Natarajan Chennimalai-Kumar
S. Chakrabarti
Liping Wang
AI4CE
96
30
0
26 Mar 2020
Deep Bayesian Gaussian Processes for Uncertainty Estimation in Electronic Health Records
Scientific Reports (Sci Rep), 2020
Yikuan Li
Shishir Rao
A. Hassaine
R. Ramakrishnan
Yajie Zhu
D. Canoy
G. Salimi-Khorshidi
Thomas Lukasiewicz
K. Rahimi
BDL
UQCV
195
42
0
23 Mar 2020
Energy-Based Processes for Exchangeable Data
International Conference on Machine Learning (ICML), 2020
Mengjiao Yang
Bo Dai
H. Dai
Dale Schuurmans
211
13
0
17 Mar 2020
Amortized variance reduction for doubly stochastic objectives
Conference on Uncertainty in Artificial Intelligence (UAI), 2020
Ayman Boustati
Sattar Vakili
J. Hensman
S. T. John
156
6
0
09 Mar 2020
Sparse Gaussian Processes Revisited: Bayesian Approaches to Inducing-Variable Approximations
Simone Rossi
Markus Heinonen
Edwin V. Bonilla
Zheyan Shen
Maurizio Filippone
UQCV
BDL
385
0
0
06 Mar 2020
A Framework for Interdomain and Multioutput Gaussian Processes
Mark van der Wilk
Vincent Dutordoir
S. T. John
A. Artemev
Vincent Adam
J. Hensman
257
100
0
02 Mar 2020
Time Series Data Augmentation for Deep Learning: A Survey
International Joint Conference on Artificial Intelligence (IJCAI), 2020
Qingsong Wen
Liang Sun
Fan Yang
Xiaomin Song
Jing Gao
Qingsong Wen
Huan Xu
AI4TS
378
765
0
27 Feb 2020
Deep Sigma Point Processes
Conference on Uncertainty in Artificial Intelligence (UAI), 2020
M. Jankowiak
Geoff Pleiss
Jacob R. Gardner
BDL
227
27
0
21 Feb 2020
Estimating Uncertainty Intervals from Collaborating Networks
Journal of machine learning research (JMLR), 2020
Tianhui Zhou
Yitong Li
Yuan Wu
David Carlson
UQCV
377
17
0
12 Feb 2020
Graph Convolutional Gaussian Processes For Link Prediction
Felix L. Opolka
Pietro Lio
GNN
118
15
0
11 Feb 2020
Conditional Deep Gaussian Processes: multi-fidelity kernel learning
Entropy (Entropy), 2020
Chi-Ken Lu
Patrick Shafto
347
5
0
07 Feb 2020
Transport Gaussian Processes for Regression
Gonzalo Rios
GP
165
6
0
30 Jan 2020
Doubly Sparse Variational Gaussian Processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Vincent Adam
Stefanos Eleftheriadis
N. Durrande
A. Artemev
J. Hensman
173
27
0
15 Jan 2020
Bayesian task embedding for few-shot Bayesian optimization
Steven Atkinson
Sayan Ghosh
Natarajan Chennimalai-Kumar
Genghis Khan
Liping Wang
BDL
71
1
0
02 Jan 2020
Warped Input Gaussian Processes for Time Series Forecasting
International Conference on Cyber Security Cryptography and Machine Learning (ICCSCML), 2019
David Tolpin
AI4TS
133
3
0
05 Dec 2019
Scalable Variational Gaussian Processes for Crowdsourcing: Glitch Detection in LIGO
IEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2019
Pablo Morales-Álvarez
Pablo Ruiz
S. Coughlin
Rafael Molina
Aggelos K. Katsaggelos
183
16
0
05 Nov 2019
Implicit Posterior Variational Inference for Deep Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2019
Haibin Yu
Yizhou Chen
Zhongxiang Dai
K. H. Low
Patrick Jaillet
219
44
0
26 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
IISE Transactions (IISE Trans.), 2019
Xubo Yue
Raed Al Kontar
362
3
0
15 Oct 2019
BoTorch: A Framework for Efficient Monte-Carlo Bayesian Optimization
Maximilian Balandat
Brian Karrer
Daniel R. Jiang
Sam Daulton
Benjamin Letham
A. Wilson
E. Bakshy
312
97
0
14 Oct 2019
Deep Kernels with Probabilistic Embeddings for Small-Data Learning
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
Ankur Mallick
Chaitanya Dwivedi
B. Kailkhura
Gauri Joshi
T. Y. Han
BDL
UQCV
232
12
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Pattern Recognition Letters (PR), 2019
Arnu Pretorius
Herman Kamper
Steve Kroon
175
9
0
12 Oct 2019
PAC-Bayesian Bounds for Deep Gaussian Processes
R. Foll
Ingo Steinwart
BDL
113
1
0
22 Sep 2019
Compositional uncertainty in deep Gaussian processes
Conference on Uncertainty in Artificial Intelligence (UAI), 2019
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Markus Kaiser
Erik Bodin
Neill D. F. Campbell
Carl Henrik Ek
UQCV
213
24
0
17 Sep 2019
Deep kernel learning for integral measurements
Carl Jidling
J. Hendriks
Thomas B. Schon
A. Wills
163
7
0
04 Sep 2019
Structured Variational Inference in Unstable Gaussian Process State Space Models
Silvan Melchior
Sebastian Curi
Felix Berkenkamp
Andreas Krause
298
4
0
16 Jul 2019
Learning GPLVM with arbitrary kernels using the unscented transformation
Daniel Augusto R. M. A. de Souza
Diego Mesquita
C. L. C. Mattos
Joao P. P. Gomes
216
0
0
03 Jul 2019
Multi-resolution Multi-task Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2019
Oliver Hamelijnck
Theodoros Damoulas
Kangrui Wang
Mark Girolami
187
40
0
19 Jun 2019
Overcoming Mean-Field Approximations in Recurrent Gaussian Process Models
International Conference on Machine Learning (ICML), 2019
Alessandro Davide Ialongo
Mark van der Wilk
J. Hensman
C. Rasmussen
233
31
0
13 Jun 2019
Deep Compositional Spatial Models
Journal of the American Statistical Association (JASA), 2019
A. Zammit‐Mangion
T. L. J. Ng
Quan Vu
Maurizio Filippone
174
63
0
06 Jun 2019
Neural Likelihoods for Multi-Output Gaussian Processes
M. Jankowiak
Jacob R. Gardner
UQCV
BDL
165
4
0
31 May 2019
Monotonic Gaussian Process Flow
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Carl Henrik Ek
Neill D. F. Campbell
179
14
0
30 May 2019
Non-linear Multitask Learning with Deep Gaussian Processes
Ayman Boustati
Theodoros Damoulas
R. Savage
BDL
105
6
0
29 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
International Conference on Machine Learning (ICML), 2019
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
116
18
0
27 May 2019
Previous
1
2
3
4
5
Next
Page 4 of 5