Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1705.08933
Cited By
v1
v2 (latest)
Doubly Stochastic Variational Inference for Deep Gaussian Processes
24 May 2017
Hugh Salimbeni
M. Deisenroth
BDL
GP
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Doubly Stochastic Variational Inference for Deep Gaussian Processes"
50 / 238 papers shown
Nonnegative spatial factorization
F. W. Townes
Barbara E. Engelhardt
147
12
0
12 Oct 2021
Probabilistic Metamodels for an Efficient Characterization of Complex Driving Scenarios
Max Winkelmann
Mike Kohlhoff
H. Tadjine
Steffen Müller
196
9
0
06 Oct 2021
Conditional Deep Gaussian Processes: empirical Bayes hyperdata learning
Chi-Ken Lu
Patrick Shafto
BDL
259
4
0
01 Oct 2021
Non-stationary Gaussian process discriminant analysis with variable selection for high-dimensional functional data
Weichang Yu
S. Wade
H. Bondell
Lamiae Azizi
141
6
0
29 Sep 2021
A theory of representation learning gives a deep generalisation of kernel methods
International Conference on Machine Learning (ICML), 2021
Adam X. Yang
Maxime Robeyns
Edward Milsom
Ben Anson
Nandi Schoots
Laurence Aitchison
BDL
557
14
0
30 Aug 2021
A variational approximate posterior for the deep Wishart process
Neural Information Processing Systems (NeurIPS), 2021
Sebastian W. Ober
Laurence Aitchison
BDL
163
11
0
21 Jul 2021
Subset-of-Data Variational Inference for Deep Gaussian-Processes Regression
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Ayush Jain
P. K. Srijith
Mohammad Emtiyaz Khan
BDL
GP
165
0
0
17 Jul 2021
Input Dependent Sparse Gaussian Processes
International Conference on Machine Learning (ICML), 2021
B. Jafrasteh
Carlos Villacampa-Calvo
Daniel Hernández-Lobato
UQCV
193
7
0
15 Jul 2021
Deep Gaussian Process Emulation using Stochastic Imputation
Deyu Ming
D. Williamson
S. Guillas
225
36
0
04 Jul 2021
Deep Gaussian Processes: A Survey
Kalvik Jakkala
AI4CE
GP
BDL
158
25
0
21 Jun 2021
SKIing on Simplices: Kernel Interpolation on the Permutohedral Lattice for Scalable Gaussian Processes
International Conference on Machine Learning (ICML), 2021
Sanyam Kapoor
Marc Finzi
Ke Alexander Wang
A. Wilson
174
12
0
12 Jun 2021
The Limitations of Large Width in Neural Networks: A Deep Gaussian Process Perspective
Neural Information Processing Systems (NeurIPS), 2021
Geoff Pleiss
John P. Cunningham
255
30
0
11 Jun 2021
Scalable Variational Gaussian Processes via Harmonic Kernel Decomposition
International Conference on Machine Learning (ICML), 2021
Shengyang Sun
Jiaxin Shi
A. Wilson
Roger C. Grosse
BDL
104
8
0
10 Jun 2021
Compositional Modeling of Nonlinear Dynamical Systems with ODE-based Random Features
Neural Information Processing Systems (NeurIPS), 2021
Thomas M. McDonald
Mauricio A. Alvarez
225
10
0
10 Jun 2021
How to Evaluate Uncertainty Estimates in Machine Learning for Regression?
Neural Networks (NN), 2021
Laurens Sluijterman
Eric Cator
Tom Heskes
UQCV
271
38
0
07 Jun 2021
Self-Attention Between Datapoints: Going Beyond Individual Input-Output Pairs in Deep Learning
Neural Information Processing Systems (NeurIPS), 2021
Jannik Kossen
Neil Band
Clare Lyle
Aidan Gomez
Tom Rainforth
Y. Gal
OOD
3DPC
310
159
0
04 Jun 2021
Inferring Black Hole Properties from Astronomical Multivariate Time Series with Bayesian Attentive Neural Processes
Ji Won Park
A. Villar
Yin Li
Yan-Fei Jiang
S. Ho
J. Lin
P. Marshall
A. Roodman
BDL
270
6
0
02 Jun 2021
Stochastic Collapsed Variational Inference for Structured Gaussian Process Regression Network
Rui Meng
Herbert Lee
K. Bouchard
181
2
0
01 Jun 2021
Sparse Uncertainty Representation in Deep Learning with Inducing Weights
Neural Information Processing Systems (NeurIPS), 2021
H. Ritter
Martin Kukla
Chen Zhang
Yingzhen Li
UQCV
BDL
203
19
0
30 May 2021
Hierarchical Non-Stationary Temporal Gaussian Processes With
L
1
L^1
L
1
-Regularization
Zheng Zhao
Rui Gao
Simo Särkkä
160
0
0
20 May 2021
Priors in Bayesian Deep Learning: A Review
International Statistical Review (ISR), 2021
Vincent Fortuin
UQCV
BDL
452
159
0
14 May 2021
Deep Neural Networks as Point Estimates for Deep Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2021
Vincent Dutordoir
J. Hensman
Mark van der Wilk
Carl Henrik Ek
Zoubin Ghahramani
N. Durrande
BDL
UQCV
314
33
0
10 May 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
177
16
0
27 Apr 2021
Convolutional Normalizing Flows for Deep Gaussian Processes
IEEE International Joint Conference on Neural Network (IJCNN), 2021
Haibin Yu
Dapeng Liu
Yizhou Chen
K. H. Low
Patrick Jaillet
BDL
202
6
0
17 Apr 2021
Deep Gaussian Processes for Biogeophysical Parameter Retrieval and Model Inversion
Isprs Journal of Photogrammetry and Remote Sensing (ISPRS J. Photogramm. Remote Sens.), 2020
D. Svendsen
Pablo Morales-Álvarez
A. Ruescas
Rafael Molina
Gustau Camps-Valls
206
31
0
16 Apr 2021
GPflux: A Library for Deep Gaussian Processes
Vincent Dutordoir
Hugh Salimbeni
Eric Hambro
John Mcleod
Felix Leibfried
A. Artemev
Mark van der Wilk
J. Hensman
M. Deisenroth
S. T. John
GP
216
29
0
12 Apr 2021
Residual Gaussian Process: A Tractable Nonparametric Bayesian Emulator for Multi-fidelity Simulations
Wei W. Xing
A. Shah
Peng Wang
Shandian Zhe
Robert M. Kirby
159
15
0
08 Apr 2021
Uncertainty-aware Remaining Useful Life predictor
Luca Biggio
Alexander Wieland
M. A. Chao
I. Kastanis
Olga Fink
AI4CE
135
8
0
08 Apr 2021
Accurate and Reliable Forecasting using Stochastic Differential Equations
Peng Cui
Zhijie Deng
Wenbo Hu
Jun Zhu
UQCV
163
1
0
28 Mar 2021
The Promises and Pitfalls of Deep Kernel Learning
Conference on Uncertainty in Artificial Intelligence (UAI), 2021
Sebastian W. Ober
C. Rasmussen
Mark van der Wilk
UQCV
BDL
388
119
0
24 Feb 2021
Using Gaussian Processes to Design Dynamic Experiments for Black-Box Model Discrimination under Uncertainty
Simon Olofsson
Eduardo S. Schultz
A. Mhamdi
Alexander Mitsos
M. Deisenroth
Ruth Misener
140
0
0
07 Feb 2021
A Tutorial on Sparse Gaussian Processes and Variational Inference
Felix Leibfried
Vincent Dutordoir
S. T. John
N. Durrande
GP
1.2K
62
0
27 Dec 2020
Active Learning for Deep Gaussian Process Surrogates
Annie Sauer
R. Gramacy
D. Higdon
GP
AI4CE
361
121
0
15 Dec 2020
Deep Gaussian Processes for geophysical parameter retrieval
D. Svendsen
Pablo Morales-Álvarez
Rafael Molina
Gustau Camps-Valls
GP
112
4
0
07 Dec 2020
Exploration in Online Advertising Systems with Deep Uncertainty-Aware Learning
Knowledge Discovery and Data Mining (KDD), 2020
Chao Du
Zhifeng Gao
Shuo Yuan
Lining Gao
Z. Li
Yifan Zeng
Xiaoqiang Zhu
Jian Xu
Kun Gai
Kuang-chih Lee
397
19
0
25 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Information Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
959
2,296
0
12 Nov 2020
A Variational Infinite Mixture for Probabilistic Inverse Dynamics Learning
Hany Abdulsamad
Peter Nickl
Pascal Klink
Jan Peters
255
4
0
10 Nov 2020
Pathwise Conditioning of Gaussian Processes
James T. Wilson
Viacheslav Borovitskiy
Alexander Terenin
P. Mostowsky
M. Deisenroth
475
70
0
08 Nov 2020
Transforming Gaussian Processes With Normalizing Flows
Juan Maroñas
Oliver Hamelijnck
Jeremias Knoblauch
Theodoros Damoulas
403
36
0
03 Nov 2020
Sample-efficient reinforcement learning using deep Gaussian processes
Charles W. L. Gadd
Markus Heinonen
Harri Lähdesmäki
Samuel Kaski
GP
BDL
154
4
0
02 Nov 2020
On Signal-to-Noise Ratio Issues in Variational Inference for Deep Gaussian Processes
International Conference on Machine Learning (ICML), 2020
Tim G. J. Rudner
Oscar Key
Y. Gal
Tom Rainforth
155
4
0
01 Nov 2020
Inter-domain Deep Gaussian Processes
International Conference on Machine Learning (ICML), 2020
Tim G. J. Rudner
Dino Sejdinovic
Yarin Gal
277
12
0
01 Nov 2020
Hierarchical Gaussian Processes with Wasserstein-2 Kernels
S. Popescu
D. Sharp
James H. Cole
Ben Glocker
307
5
0
28 Oct 2020
UNITE: Uncertainty-based Health Risk Prediction Leveraging Multi-sourced Data
Chacha Chen
Junjie Liang
Fenglong Ma
Lucas Glass
Jimeng Sun
Cao Xiao
163
29
0
22 Oct 2020
Probabilistic selection of inducing points in sparse Gaussian processes
Conference on Uncertainty in Artificial Intelligence (UAI), 2020
Anders Kirk Uhrenholt
V. Charvet
B. S. Jensen
255
15
0
19 Oct 2020
Characterizing Deep Gaussian Processes via Nonlinear Recurrence Systems
AAAI Conference on Artificial Intelligence (AAAI), 2020
Anh Tong
Jaesik Choi
373
2
0
19 Oct 2020
Sparse Spectrum Warped Input Measures for Nonstationary Kernel Learning
Neural Information Processing Systems (NeurIPS), 2020
A. Tompkins
Rafael Oliveira
F. Ramos
224
6
0
09 Oct 2020
Using Bayesian deep learning approaches for uncertainty-aware building energy surrogate models
Paul Westermann
R. Evins
AI4CE
82
53
0
05 Oct 2020
Deep kernel processes
International Conference on Machine Learning (ICML), 2020
Laurence Aitchison
Adam X. Yang
Sebastian W. Ober
BDL
362
42
0
04 Oct 2020
Stein Variational Gaussian Processes
Thomas Pinder
Christopher Nemeth
David Leslie
BDL
252
7
0
25 Sep 2020
Previous
1
2
3
4
5
Next
Page 3 of 5