ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.09048
  4. Cited By
Convergence of Langevin MCMC in KL-divergence
v1v2 (latest)

Convergence of Langevin MCMC in KL-divergence

25 May 2017
Xiang Cheng
Peter L. Bartlett
ArXiv (abs)PDFHTML

Papers citing "Convergence of Langevin MCMC in KL-divergence"

50 / 73 papers shown
Title
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Mixing Time of the Proximal Sampler in Relative Fisher Information via Strong Data Processing Inequality
Andre Wibisono
122
1
0
01 Jul 2025
Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures
Sample and Map from a Single Convex Potential: Generation using Conjugate Moment Measures
Nina Vesseron
Louis Béthune
Marco Cuturi
132
0
0
13 Mar 2025
On the query complexity of sampling from non-log-concave distributions
On the query complexity of sampling from non-log-concave distributions
Yuchen He
Chihao Zhang
114
1
0
10 Feb 2025
CPR: Retrieval Augmented Generation for Copyright Protection
CPR: Retrieval Augmented Generation for Copyright Protection
Aditya Golatkar
Alessandro Achille
Luca Zancato
Yu-Xiang Wang
Ashwin Swaminathan
Stefano Soatto
DiffM
80
17
0
27 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
119
2
0
05 Mar 2024
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Implicit Diffusion: Efficient Optimization through Stochastic Sampling
Pierre Marion
Anna Korba
Peter Bartlett
Mathieu Blondel
Valentin De Bortoli
Arnaud Doucet
Felipe Llinares-López
Courtney Paquette
Quentin Berthet
154
15
0
08 Feb 2024
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
The surrogate Gibbs-posterior of a corrected stochastic MALA: Towards uncertainty quantification for neural networks
S. Bieringer
Gregor Kasieczka
Maximilian F. Steffen
Mathias Trabs
87
1
0
13 Oct 2023
Particle Mean Field Variational Bayes
Particle Mean Field Variational Bayes
Minh-Ngoc Tran
Paco Tseng
Robert Kohn
77
3
0
24 Mar 2023
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional
  Compression
ELF: Federated Langevin Algorithms with Primal, Dual and Bidirectional Compression
Avetik G. Karagulyan
Peter Richtárik
FedML
64
6
0
08 Mar 2023
Asynchronous Bayesian Learning over a Network
Asynchronous Bayesian Learning over a Network
Kinjal Bhar
H. Bai
Jemin George
Carl E. Busart
FedML
56
0
0
16 Nov 2022
Self-Adapting Noise-Contrastive Estimation for Energy-Based Models
Self-Adapting Noise-Contrastive Estimation for Energy-Based Models
Na Xu
17
2
0
03 Nov 2022
Jump-Diffusion Langevin Dynamics for Multimodal Posterior Sampling
Jump-Diffusion Langevin Dynamics for Multimodal Posterior Sampling
Jacopo Guidolin
Vyacheslav Kungurtsev
Ondvrej Kuvzelka
BDL
38
0
0
02 Nov 2022
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Denoising MCMC for Accelerating Diffusion-Based Generative Models
Beomsu Kim
Jong Chul Ye
DiffM
93
15
0
29 Sep 2022
A Particle-Based Algorithm for Distributional Optimization on
  \textit{Constrained Domains} via Variational Transport and Mirror Descent
A Particle-Based Algorithm for Distributional Optimization on \textit{Constrained Domains} via Variational Transport and Mirror Descent
Dai Hai Nguyen
Tetsuya Sakurai
100
2
0
01 Aug 2022
Discrete Langevin Sampler via Wasserstein Gradient Flow
Discrete Langevin Sampler via Wasserstein Gradient Flow
Haoran Sun
H. Dai
Bo Dai
Haomin Zhou
Dale Schuurmans
BDL
90
24
0
29 Jun 2022
Convergence for score-based generative modeling with polynomial
  complexity
Convergence for score-based generative modeling with polynomial complexity
Holden Lee
Jianfeng Lu
Yixin Tan
DiffM
80
140
0
13 Jun 2022
Convergence of Stein Variational Gradient Descent under a Weaker
  Smoothness Condition
Convergence of Stein Variational Gradient Descent under a Weaker Smoothness Condition
Lukang Sun
Avetik G. Karagulyan
Peter Richtárik
88
19
0
01 Jun 2022
A Proximal Algorithm for Sampling
A Proximal Algorithm for Sampling
Jiaming Liang
Yongxin Chen
104
18
0
28 Feb 2022
Unadjusted Langevin algorithm for sampling a mixture of weakly smooth potentials
D. Nguyen
58
5
0
17 Dec 2021
Variational Wasserstein gradient flow
Variational Wasserstein gradient flow
JiaoJiao Fan
Qinsheng Zhang
Amirhossein Taghvaei
Yongxin Chen
167
57
0
04 Dec 2021
Sampling from Log-Concave Distributions with Infinity-Distance
  Guarantees
Sampling from Log-Concave Distributions with Infinity-Distance Guarantees
Oren Mangoubi
Nisheeth K. Vishnoi
83
15
0
07 Nov 2021
A Proximal Algorithm for Sampling from Non-smooth Potentials
A Proximal Algorithm for Sampling from Non-smooth Potentials
Jiaming Liang
Yongxin Chen
108
26
0
09 Oct 2021
When is the Convergence Time of Langevin Algorithms Dimension
  Independent? A Composite Optimization Viewpoint
When is the Convergence Time of Langevin Algorithms Dimension Independent? A Composite Optimization Viewpoint
Y. Freund
Yi-An Ma
Tong Zhang
72
16
0
05 Oct 2021
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for
  Log-Concave Sampling
Minimax Mixing Time of the Metropolis-Adjusted Langevin Algorithm for Log-Concave Sampling
Keru Wu
S. Schmidler
Yuansi Chen
127
54
0
27 Sep 2021
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Sqrt(d) Dimension Dependence of Langevin Monte Carlo
Ruilin Li
H. Zha
Molei Tao
94
29
0
08 Sep 2021
Convergence Analysis of Schr{ö}dinger-F{ö}llmer Sampler without
  Convexity
Convergence Analysis of Schr{ö}dinger-F{ö}llmer Sampler without Convexity
Yuling Jiao
Lican Kang
Yanyan Liu
Youzhou Zhou
OT
53
6
0
10 Jul 2021
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Schr{ö}dinger-F{ö}llmer Sampler: Sampling without Ergodicity
Jian Huang
Yuling Jiao
Lican Kang
Xu Liao
Jin Liu
Yanyan Liu
98
27
0
21 Jun 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
82
7
0
12 Feb 2021
Unadjusted Langevin algorithm for non-convex weakly smooth potentials
Unadjusted Langevin algorithm for non-convex weakly smooth potentials
D. Nguyen
Xin Dang
Yixin Chen
78
14
0
16 Jan 2021
Particle Dual Averaging: Optimization of Mean Field Neural Networks with
  Global Convergence Rate Analysis
Particle Dual Averaging: Optimization of Mean Field Neural Networks with Global Convergence Rate Analysis
Atsushi Nitanda
Denny Wu
Taiji Suzuki
86
29
0
31 Dec 2020
Policy Optimization as Online Learning with Mediator Feedback
Policy Optimization as Online Learning with Mediator Feedback
Alberto Maria Metelli
Matteo Papini
P. DÓro
Marcello Restelli
OffRL
54
10
0
15 Dec 2020
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
  Sampling Method
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
66
35
0
06 Nov 2020
Efficient constrained sampling via the mirror-Langevin algorithm
Efficient constrained sampling via the mirror-Langevin algorithm
Kwangjun Ahn
Sinho Chewi
117
57
0
30 Oct 2020
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Mufan Li
Murat A. Erdogdu
118
29
0
21 Oct 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet
  Log-Sobolev
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin
  Algorithm
Primal Dual Interpretation of the Proximal Stochastic Gradient Langevin Algorithm
Adil Salim
Peter Richtárik
78
40
0
16 Jun 2020
SVGD as a kernelized Wasserstein gradient flow of the chi-squared
  divergence
SVGD as a kernelized Wasserstein gradient flow of the chi-squared divergence
Sinho Chewi
Thibaut Le Gouic
Chen Lu
Tyler Maunu
Philippe Rigollet
100
70
0
03 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
On Thompson Sampling with Langevin Algorithms
On Thompson Sampling with Langevin Algorithms
Eric Mazumdar
Aldo Pacchiano
Yi-An Ma
Peter L. Bartlett
Michael I. Jordan
67
11
0
23 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
71
66
0
11 Feb 2020
Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms
Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms
Niladri S. Chatterji
Peter L. Bartlett
Philip M. Long
63
8
0
01 Feb 2020
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Andre Wibisono
141
49
0
04 Nov 2019
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
81
1
0
21 Oct 2019
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
125
118
0
12 Sep 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
84
85
0
28 Aug 2019
Bayesian Robustness: A Nonasymptotic Viewpoint
Bayesian Robustness: A Nonasymptotic Viewpoint
Kush S. Bhatia
Yian Ma
Anca Dragan
Peter L. Bartlett
Michael I. Jordan
46
7
0
27 Jul 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal
  Rates without Convexity
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
68
68
0
25 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly
  log-concave targets
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
100
71
0
19 Jun 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
105
43
0
30 May 2019
12
Next