Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1705.10306
Cited By
Auto-Encoding Sequential Monte Carlo
29 May 2017
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
BDL
DRL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Auto-Encoding Sequential Monte Carlo"
47 / 47 papers shown
Title
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Hanming Yang
A. Moretti
Sebastian Macaluso
Philippe Chlenski
C. A. Naesseth
I. Pe’er
BDL
49
1
0
03 Jan 2025
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
43
7
0
24 Jun 2024
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
30
1
0
02 May 2024
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
29
1
0
26 Sep 2023
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
35
2
0
18 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
41
6
0
02 May 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
39
3
0
27 Apr 2023
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
57
2
0
14 Dec 2022
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
24
32
0
14 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
37
1
0
27 Sep 2022
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
23
15
0
13 Jun 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
39
6
0
04 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
49
46
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Learning to Assimilate in Chaotic Dynamical Systems
Michael McCabe
Jed Brown
AI4TS
41
10
0
01 Nov 2021
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
41
21
0
26 Oct 2021
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
35
10
0
25 Jun 2021
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
34
20
0
21 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
28
19
0
18 Jun 2021
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
Soumyasundar Pal
Liheng Ma
Yingxue Zhang
Mark Coates
BDL
AI4TS
33
22
0
10 Jun 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
27
25
0
22 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
48
66
0
15 Feb 2021
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
48
70
0
15 Feb 2021
Multimodal Sensor Fusion with Differentiable Filters
Michelle A. Lee
Brent Yi
Roberto Martín-Martín
Silvio Savarese
Jeannette Bohg
27
59
0
25 Oct 2020
Variational Dynamic Mixtures
Chen Qiu
Stephan Mandt
Maja R. Rudolph
BDL
AI4TS
16
2
0
20 Oct 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
32
266
0
08 Nov 2019
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
32
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
29
18
0
24 Jun 2019
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
16
82
0
30 May 2019
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
22
9
0
02 Feb 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
29
2
0
03 Jan 2019
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
21
7
0
27 Oct 2018
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
26
52
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
36
16
0
05 Aug 2018
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank Wood
Shimon Whiteson
BDL
OffRL
26
259
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
27
30
0
01 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
27
117
0
23 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
34
197
0
13 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
41
214
0
31 May 2017
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco F. Cusumano-Towner
Vikash K. Mansinghka
22
17
0
19 May 2017
1