ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1705.10306
  4. Cited By
Auto-Encoding Sequential Monte Carlo

Auto-Encoding Sequential Monte Carlo

29 May 2017
T. Le
Maximilian Igl
Tom Rainforth
Tom Jin
Frank Wood
    BDL
    DRL
ArXivPDFHTML

Papers citing "Auto-Encoding Sequential Monte Carlo"

47 / 47 papers shown
Title
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Variational Pseudo Marginal Methods for Jet Reconstruction in Particle Physics
Hanming Yang
A. Moretti
Sebastian Macaluso
Philippe Chlenski
C. A. Naesseth
I. Pe’er
BDL
49
1
0
03 Jan 2025
Inferring stochastic low-rank recurrent neural networks from neural data
Inferring stochastic low-rank recurrent neural networks from neural data
Matthijs Pals
A Erdem Sağtekin
Felix Pei
Manuel Gloeckler
Jakob H Macke
43
7
0
24 Jun 2024
Revisiting semi-supervised training objectives for differentiable
  particle filters
Revisiting semi-supervised training objectives for differentiable particle filters
Jiaxi Li
John-Joseph Brady
Xiongjie Chen
Yunpeng Li
33
1
0
02 May 2024
Reparameterized Variational Rejection Sampling
Reparameterized Variational Rejection Sampling
M. Jankowiak
Du Phan
DRL
BDL
29
1
0
26 Sep 2023
Massively Parallel Reweighted Wake-Sleep
Massively Parallel Reweighted Wake-Sleep
Thomas Heap
Gavin Leech
Laurence Aitchison
BDL
35
2
0
18 May 2023
Cheap and Deterministic Inference for Deep State-Space Models of
  Interacting Dynamical Systems
Cheap and Deterministic Inference for Deep State-Space Models of Interacting Dynamical Systems
Andreas Look
M. Kandemir
Barbara Rakitsch
Jan Peters
BDL
41
6
0
02 May 2023
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo
  Samplers
Resampling Gradients Vanish in Differentiable Sequential Monte Carlo Samplers
Johannes Zenn
Robert Bamler
39
3
0
27 Apr 2023
U-Statistics for Importance-Weighted Variational Inference
U-Statistics for Importance-Weighted Variational Inference
Javier Burroni
Kenta Takatsu
Justin Domke
Daniel Sheldon
18
1
0
27 Feb 2023
Particle-Based Score Estimation for State Space Model Learning in
  Autonomous Driving
Particle-Based Score Estimation for State Space Model Learning in Autonomous Driving
Angad Singh
Omar Makhlouf
Maximilian Igl
Joao Messias
Arnaud Doucet
Shimon Whiteson
57
2
0
14 Dec 2022
A Variational Perspective on Generative Flow Networks
A Variational Perspective on Generative Flow Networks
Heiko Zimmermann
Fredrik Lindsten
Jan-Willem van de Meent
C. A. Naesseth
24
32
0
14 Oct 2022
Optimization of Annealed Importance Sampling Hyperparameters
Optimization of Annealed Importance Sampling Hyperparameters
Shirin Goshtasbpour
Fernando Perez-Cruz
37
1
0
27 Sep 2022
SIXO: Smoothing Inference with Twisted Objectives
SIXO: Smoothing Inference with Twisted Objectives
Dieterich Lawson
Allan Raventós
Andrew Warrington
Scott W. Linderman
BDL
23
15
0
13 Jun 2022
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
De-Sequentialized Monte Carlo: a parallel-in-time particle smoother
Adrien Corenflos
Nicolas Chopin
Simo Särkkä
39
6
0
04 Feb 2022
Continual Repeated Annealed Flow Transport Monte Carlo
Continual Repeated Annealed Flow Transport Monte Carlo
A. G. Matthews
Michael Arbel
Danilo Jimenez Rezende
Arnaud Doucet
OT
49
46
0
31 Jan 2022
Surrogate Likelihoods for Variational Annealed Importance Sampling
Surrogate Likelihoods for Variational Annealed Importance Sampling
M. Jankowiak
Du Phan
BDL
35
13
0
22 Dec 2021
Learning to Assimilate in Chaotic Dynamical Systems
Learning to Assimilate in Chaotic Dynamical Systems
Michael McCabe
Jed Brown
AI4TS
41
10
0
01 Nov 2021
Online Variational Filtering and Parameter Learning
Online Variational Filtering and Parameter Learning
Andrew Campbell
Yuyang Shi
Tom Rainforth
Arnaud Doucet
BDL
43
21
0
26 Oct 2021
On Incorporating Inductive Biases into VAEs
On Incorporating Inductive Biases into VAEs
Ning Miao
Emile Mathieu
N. Siddharth
Yee Whye Teh
Tom Rainforth
CML
DRL
35
10
0
25 Jun 2021
Nested Variational Inference
Nested Variational Inference
Heiko Zimmermann
Hao Wu
Babak Esmaeili
Jan-Willem van de Meent
BDL
34
20
0
21 Jun 2021
Differentiable Particle Filtering without Modifying the Forward Pass
Differentiable Particle Filtering without Modifying the Forward Pass
Adam Scibior
Frank Wood
30
19
0
18 Jun 2021
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
RNN with Particle Flow for Probabilistic Spatio-temporal Forecasting
Soumyasundar Pal
Liheng Ma
Yingxue Zhang
Mark Coates
BDL
AI4TS
33
22
0
10 Jun 2021
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Improving Lossless Compression Rates via Monte Carlo Bits-Back Coding
Yangjun Ruan
Karen Ullrich
Daniel de Souza Severo
James Townsend
Ashish Khisti
Arnaud Doucet
Alireza Makhzani
Chris J. Maddison
27
25
0
22 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
48
66
0
15 Feb 2021
Annealed Flow Transport Monte Carlo
Annealed Flow Transport Monte Carlo
Michael Arbel
A. G. Matthews
Arnaud Doucet
48
70
0
15 Feb 2021
Multimodal Sensor Fusion with Differentiable Filters
Multimodal Sensor Fusion with Differentiable Filters
Michelle A. Lee
Brent Yi
Roberto Martín-Martín
Silvio Savarese
Jeannette Bohg
27
59
0
25 Oct 2020
Variational Dynamic Mixtures
Variational Dynamic Mixtures
Chen Qiu
Stephan Mandt
Maja R. Rudolph
BDL
AI4TS
16
2
0
20 Oct 2020
Markovian Score Climbing: Variational Inference with KL(p||q)
Markovian Score Climbing: Variational Inference with KL(p||q)
C. A. Naesseth
Fredrik Lindsten
David M. Blei
123
54
0
23 Mar 2020
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep
  Generative Models
Variational Mixture-of-Experts Autoencoders for Multi-Modal Deep Generative Models
Yuge Shi
Siddharth Narayanaswamy
Brooks Paige
Philip Torr
DRL
32
266
0
08 Nov 2019
Particle Smoothing Variational Objectives
Particle Smoothing Variational Objectives
A. Moretti
Zizhao Wang
Luhuan Wu
Iddo Drori
I. Pe’er
32
10
0
20 Sep 2019
Divide and Couple: Using Monte Carlo Variational Objectives for
  Posterior Approximation
Divide and Couple: Using Monte Carlo Variational Objectives for Posterior Approximation
Justin Domke
Daniel Sheldon
32
18
0
24 Jun 2019
Streaming Variational Monte Carlo
Streaming Variational Monte Carlo
Yuan Zhao
Josue Nassar
I. Jordan
M. Bugallo
Il Memming Park
BDL
34
21
0
04 Jun 2019
Particle Filter Recurrent Neural Networks
Particle Filter Recurrent Neural Networks
Xiao Ma
Peter Karkus
David Hsu
Wee Sun Lee
16
82
0
30 May 2019
Particle Flow Bayes' Rule
Particle Flow Bayes' Rule
Xinshi Chen
H. Dai
Le Song
22
9
0
02 Feb 2019
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte
  Carlo Sampler
Learning Nonlinear State Space Models with Hamiltonian Sequential Monte Carlo Sampler
Duo Xu
29
2
0
03 Jan 2019
A General Method for Amortizing Variational Filtering
A General Method for Amortizing Variational Filtering
Joseph Marino
Milan Cvitkovic
Yisong Yue
27
34
0
13 Nov 2018
The Variational Deficiency Bottleneck
The Variational Deficiency Bottleneck
P. Banerjee
Guido Montúfar
21
7
0
27 Oct 2018
Unbiased Implicit Variational Inference
Unbiased Implicit Variational Inference
Michalis K. Titsias
Francisco J. R. Ruiz
BDL
26
52
0
06 Aug 2018
A Review of Learning with Deep Generative Models from Perspective of
  Graphical Modeling
A Review of Learning with Deep Generative Models from Perspective of Graphical Modeling
Zhijian Ou
36
16
0
05 Aug 2018
Deep Variational Reinforcement Learning for POMDPs
Deep Variational Reinforcement Learning for POMDPs
Maximilian Igl
L. Zintgraf
T. Le
Frank Wood
Shimon Whiteson
BDL
OffRL
26
259
0
06 Jun 2018
Reparameterization Gradient for Non-differentiable Models
Reparameterization Gradient for Non-differentiable Models
Wonyeol Lee
Hangyeol Yu
Hongseok Yang
DRL
27
30
0
01 Jun 2018
Scalable Bayesian Learning for State Space Models using Variational
  Inference with SMC Samplers
Scalable Bayesian Learning for State Space Models using Variational Inference with SMC Samplers
Marcel Hirt
P. Dellaportas
BDL
20
10
0
23 May 2018
Particle Filter Networks with Application to Visual Localization
Particle Filter Networks with Application to Visual Localization
Peter Karkus
David Hsu
Wee Sun Lee
3DPC
27
117
0
23 May 2018
Tighter Variational Bounds are Not Necessarily Better
Tighter Variational Bounds are Not Necessarily Better
Tom Rainforth
Adam R. Kosiorek
T. Le
Chris J. Maddison
Maximilian Igl
Frank Wood
Yee Whye Teh
DRL
34
197
0
13 Feb 2018
Faithful Inversion of Generative Models for Effective Amortized
  Inference
Faithful Inversion of Generative Models for Effective Amortized Inference
Stefan Webb
Adam Goliñski
R. Zinkov
Siddharth Narayanaswamy
Tom Rainforth
Yee Whye Teh
Frank Wood
TPM
51
46
0
01 Dec 2017
Variational Sequential Monte Carlo
Variational Sequential Monte Carlo
C. A. Naesseth
Scott W. Linderman
Rajesh Ranganath
David M. Blei
BDL
41
214
0
31 May 2017
Filtering Variational Objectives
Filtering Variational Objectives
Chris J. Maddison
Dieterich Lawson
George Tucker
N. Heess
Mohammad Norouzi
A. Mnih
Arnaud Doucet
Yee Whye Teh
FedML
22
210
0
25 May 2017
AIDE: An algorithm for measuring the accuracy of probabilistic inference
  algorithms
AIDE: An algorithm for measuring the accuracy of probabilistic inference algorithms
Marco F. Cusumano-Towner
Vikash K. Mansinghka
22
17
0
19 May 2017
1