ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 397 papers shown
Title
Super-efficiency of automatic differentiation for functions defined as a
  minimum
Super-efficiency of automatic differentiation for functions defined as a minimumInternational Conference on Machine Learning (ICML), 2020
Pierre Ablin
Gabriel Peyré
Thomas Moreau
186
42
0
10 Feb 2020
Statistical Optimal Transport posed as Learning Kernel Embedding
Statistical Optimal Transport posed as Learning Kernel EmbeddingNeural Information Processing Systems (NeurIPS), 2020
SakethaNath Jagarlapudi
Pratik Jawanpuria
OT
156
17
0
08 Feb 2020
Geometric Dataset Distances via Optimal Transport
Geometric Dataset Distances via Optimal TransportNeural Information Processing Systems (NeurIPS), 2020
David Alvarez-Melis
Nicolò Fusi
OT
219
230
0
07 Feb 2020
Learning Implicit Generative Models with Theoretical Guarantees
Learning Implicit Generative Models with Theoretical Guarantees
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
154
7
0
07 Feb 2020
Fast and Robust Comparison of Probability Measures in Heterogeneous
  Spaces
Fast and Robust Comparison of Probability Measures in Heterogeneous Spaces
Ryoma Sato
Marco Cuturi
M. Yamada
H. Kashima
161
26
0
05 Feb 2020
Stochastic Approximation versus Sample Average Approximation for
  population Wasserstein barycenters
Stochastic Approximation versus Sample Average Approximation for population Wasserstein barycenters
D. Dvinskikh
199
11
0
21 Jan 2020
Nested-Wasserstein Self-Imitation Learning for Sequence Generation
Nested-Wasserstein Self-Imitation Learning for Sequence GenerationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Ruiyi Zhang
Changyou Chen
Zhe Gan
Zheng Wen
Wenlin Wang
Lawrence Carin
180
7
0
20 Jan 2020
Schrödinger Bridge Samplers
Schrödinger Bridge Samplers
Espen Bernton
J. Heng
Arnaud Doucet
Pierre E. Jacob
135
27
0
31 Dec 2019
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal
  and Image Processing
Algorithm Unrolling: Interpretable, Efficient Deep Learning for Signal and Image ProcessingIEEE Signal Processing Magazine (IEEE SPM), 2019
V. Monga
Yuelong Li
Yonina C. Eldar
296
1,204
0
22 Dec 2019
Informative GANs via Structured Regularization of Optimal Transport
Informative GANs via Structured Regularization of Optimal Transport
Pierre Bréchet
Tao Wu
Thomas Möllenhoff
Zorah Lähner
OT
66
0
0
04 Dec 2019
Ground Metric Learning on Graphs
Ground Metric Learning on GraphsJournal of Mathematical Imaging and Vision (JMIV), 2019
Matthieu Heitz
Nicolas Bonneel
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
OT
245
22
0
08 Nov 2019
Unsupervised Hierarchy Matching with Optimal Transport over Hyperbolic
  Spaces
Unsupervised Hierarchy Matching with Optimal Transport over Hyperbolic SpacesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
David Alvarez-Melis
Youssef Mroueh
Tommi Jaakkola
OT
196
26
0
06 Nov 2019
Alleviating Label Switching with Optimal Transport
Alleviating Label Switching with Optimal TransportNeural Information Processing Systems (NeurIPS), 2019
Pierre Monteiller
Sebastian Claici
Edward Chien
F. Mirzazadeh
Justin Solomon
Mikhail Yurochkin
190
6
0
05 Nov 2019
Multi-marginal Wasserstein GAN
Multi-marginal Wasserstein GANNeural Information Processing Systems (NeurIPS), 2019
Jingyun Liang
Langyuan Mo
Yifan Zhang
Kui Jia
Chunhua Shen
Zhuliang Yu
153
85
0
03 Nov 2019
Sinkhorn Divergences for Unbalanced Optimal Transport
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
301
82
0
28 Oct 2019
Zero-Shot Recognition via Optimal Transport
Zero-Shot Recognition via Optimal Transport
Wenlin Wang
Hongteng Xu
Guoyin Wang
Wenqi Wang
Lawrence Carin
OT
132
2
0
20 Oct 2019
Differentiable Deep Clustering with Cluster Size Constraints
Differentiable Deep Clustering with Cluster Size Constraints
Aude Genevay
Gabriel Dulac-Arnold
Jean-Philippe Vert
155
42
0
20 Oct 2019
Quantitative stability of optimal transport maps and linearization of
  the 2-Wasserstein space
Quantitative stability of optimal transport maps and linearization of the 2-Wasserstein spaceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Q. Mérigot
Alex Delalande
Frédéric Chazal
OT
125
49
0
14 Oct 2019
Prescribed Generative Adversarial Networks
Prescribed Generative Adversarial Networks
Adji Bousso Dieng
Francisco J. R. Ruiz
David M. Blei
Michalis K. Titsias
GANDRL
171
61
0
09 Oct 2019
Learning with minibatch Wasserstein : asymptotic and gradient properties
Learning with minibatch Wasserstein : asymptotic and gradient propertiesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Kilian Fatras
Younes Zine
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
218
102
0
09 Oct 2019
How Well Do WGANs Estimate the Wasserstein Metric?
How Well Do WGANs Estimate the Wasserstein Metric?
Anton Mallasto
Guido Montúfar
Augusto Gerolin
89
26
0
09 Oct 2019
Spatio-Temporal Alignments: Optimal transport through space and time
Spatio-Temporal Alignments: Optimal transport through space and timeInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
H. Janati
Marco Cuturi
Alexandre Gramfort
OTAI4TS
232
35
0
09 Oct 2019
A mathematical theory of cooperative communication
A mathematical theory of cooperative communicationNeural Information Processing Systems (NeurIPS), 2019
Pei Wang
Junqi Wang
P. Paranamana
Patrick Shafto
130
52
0
07 Oct 2019
On the estimation of the Wasserstein distance in generative models
On the estimation of the Wasserstein distance in generative modelsGerman Conference on Pattern Recognition (DAGM), 2019
Thomas Pinetz
Daniel Soukup
Thomas Pock
GAN
120
9
0
02 Oct 2019
Learning transport cost from subset correspondence
Learning transport cost from subset correspondenceInternational Conference on Learning Representations (ICLR), 2019
Ruishan Liu
Akshay Balsubramani
James Zou
OT
139
16
0
29 Sep 2019
UNITER: UNiversal Image-TExt Representation Learning
UNITER: UNiversal Image-TExt Representation LearningEuropean Conference on Computer Vision (ECCV), 2019
Yen-Chun Chen
Linjie Li
Licheng Yu
Ahmed El Kholy
Faisal Ahmed
Zhe Gan
Yu Cheng
Jingjing Liu
VLMOT
309
463
0
25 Sep 2019
Enhancing Traffic Scene Predictions with Generative Adversarial Networks
Enhancing Traffic Scene Predictions with Generative Adversarial NetworksInternational Conference on Intelligent Transportation Systems (ITSC), 2019
Peter König
Sandra Aigner
Marco Körner
64
3
0
24 Sep 2019
Estimation of Wasserstein distances in the Spiked Transport Model
Estimation of Wasserstein distances in the Spiked Transport ModelBernoulli (Bernoulli), 2019
Jonathan Niles-Weed
Philippe Rigollet
158
109
0
16 Sep 2019
Wasserstein Distributionally Robust Optimization: Theory and
  Applications in Machine Learning
Wasserstein Distributionally Robust Optimization: Theory and Applications in Machine Learning
Daniel Kuhn
Peyman Mohajerin Esfahani
Viet Anh Nguyen
Soroosh Shafieezadeh-Abadeh
OOD
214
450
0
23 Aug 2019
Fast convergence of empirical barycenters in Alexandrov spaces and the
  Wasserstein space
Fast convergence of empirical barycenters in Alexandrov spaces and the Wasserstein space
Thibaut Le Gouic
Q. Paris
Philippe Rigollet
Austin J. Stromme
235
57
0
02 Aug 2019
Defense Against Adversarial Attacks Using Feature Scattering-based
  Adversarial Training
Defense Against Adversarial Attacks Using Feature Scattering-based Adversarial TrainingNeural Information Processing Systems (NeurIPS), 2019
Haichao Zhang
Jianyu Wang
AAML
316
239
0
24 Jul 2019
Optimal Transport-based Alignment of Learned Character Representations
  for String Similarity
Optimal Transport-based Alignment of Learned Character Representations for String SimilarityAnnual Meeting of the Association for Computational Linguistics (ACL), 2019
Derek Tam
Nicholas Monath
Ari Kobren
Aaron Traylor
Rajarshi Das
Andrew McCallum
114
16
0
23 Jul 2019
Statistical data analysis in the Wasserstein space
Statistical data analysis in the Wasserstein spaceESAIM Proceedings and Surveys (ESAIM Proc. Surv.), 2019
Jérémie Bigot
215
36
0
19 Jul 2019
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal
  Transport
k-GANs: Ensemble of Generative Models with Semi-Discrete Optimal Transport
L. Ambrogioni
Umut Güçlü
Marcel van Gerven
GAN
70
4
0
09 Jul 2019
Adversarial Computation of Optimal Transport Maps
Adversarial Computation of Optimal Transport Maps
Jacob Leygonie
Jennifer She
Amjad Almahairi
Sai Rajeswar
Aaron Courville
GANOT
123
21
0
24 Jun 2019
GAIT: A Geometric Approach to Information Theory
GAIT: A Geometric Approach to Information TheoryInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Jose Gallego-Posada
Ankit Vani
Max Schwarzer
Damien Scieur
170
8
0
19 Jun 2019
Minimum Stein Discrepancy Estimators
Minimum Stein Discrepancy EstimatorsNeural Information Processing Systems (NeurIPS), 2019
Alessandro Barp
François‐Xavier Briol
Andrew B. Duncan
Mark Girolami
Lester W. Mackey
239
96
0
19 Jun 2019
Local Bures-Wasserstein Transport: A Practical and Fast Mapping
  Approximation
Local Bures-Wasserstein Transport: A Practical and Fast Mapping Approximation
Andrés Hoyos-Idrobo
OT
71
0
0
19 Jun 2019
Statistical Inference for Generative Models with Maximum Mean
  Discrepancy
Statistical Inference for Generative Models with Maximum Mean Discrepancy
François‐Xavier Briol
Alessandro Barp
Andrew B. Duncan
Mark Girolami
167
78
0
13 Jun 2019
Asymptotic Guarantees for Learning Generative Models with the
  Sliced-Wasserstein Distance
Asymptotic Guarantees for Learning Generative Models with the Sliced-Wasserstein DistanceNeural Information Processing Systems (NeurIPS), 2019
Kimia Nadjahi
Alain Durmus
Umut Simsekli
Roland Badeau
MedIm
168
65
0
11 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient FlowNeural Information Processing Systems (NeurIPS), 2019
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
299
179
0
11 Jun 2019
A gradual, semi-discrete approach to generative network training via
  explicit Wasserstein minimization
A gradual, semi-discrete approach to generative network training via explicit Wasserstein minimizationInternational Conference on Machine Learning (ICML), 2019
Yucheng Chen
Matus Telgarsky
Chao Zhang
Bolton Bailey
Daniel J. Hsu
Jian-wei Peng
GANOT
117
22
0
08 Jun 2019
GOT: An Optimal Transport framework for Graph comparison
GOT: An Optimal Transport framework for Graph comparisonNeural Information Processing Systems (NeurIPS), 2019
Hermina Petric Maretic
Mireille El Gheche
Giovanni Chierchia
P. Frossard
OT
332
131
0
05 Jun 2019
Sinkhorn Barycenters with Free Support via Frank-Wolfe Algorithm
Sinkhorn Barycenters with Free Support via Frank-Wolfe AlgorithmNeural Information Processing Systems (NeurIPS), 2019
Giulia Luise
Saverio Salzo
Massimiliano Pontil
C. Ciliberto
151
69
0
30 May 2019
Statistical bounds for entropic optimal transport: sample complexity and
  the central limit theorem
Statistical bounds for entropic optimal transport: sample complexity and the central limit theoremNeural Information Processing Systems (NeurIPS), 2019
Gonzalo E. Mena
Jonathan Niles-Weed
OT
218
180
0
28 May 2019
Utility/Privacy Trade-off through the lens of Optimal Transport
Utility/Privacy Trade-off through the lens of Optimal TransportInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Etienne Boursier
Vianney Perchet
258
8
0
27 May 2019
Subspace Detours: Building Transport Plans that are Optimal on Subspace
  Projections
Subspace Detours: Building Transport Plans that are Optimal on Subspace ProjectionsNeural Information Processing Systems (NeurIPS), 2019
Boris Muzellec
Marco Cuturi
OT
259
33
0
24 May 2019
Geometric Losses for Distributional Learning
Geometric Losses for Distributional LearningInternational Conference on Machine Learning (ICML), 2019
A. Mensch
Mathieu Blondel
Gabriel Peyré
214
16
0
15 May 2019
Minimax estimation of smooth optimal transport maps
Minimax estimation of smooth optimal transport maps
Jan-Christian Hütter
Philippe Rigollet
OT
223
29
0
14 May 2019
Learning Generative Models across Incomparable Spaces
Learning Generative Models across Incomparable SpacesInternational Conference on Machine Learning (ICML), 2019
Charlotte Bunne
David Alvarez-Melis
Andreas Krause
Stefanie Jegelka
GAN
144
117
0
14 May 2019
Previous
12345678
Next