ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXivPDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 375 papers shown
Title
Flow Matching Ergodic Coverage
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
28
0
0
24 Apr 2025
Resonances in reflective Hamiltonian Monte Carlo
Resonances in reflective Hamiltonian Monte Carlo
Namu Kroupa
Gábor Csányi
Will Handley
31
0
0
16 Apr 2025
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Alice Driessen
Benedek Harsanyi
Marianna Rapsomaniki
Jannis Born
AI4CE
34
0
0
11 Apr 2025
A Truncated Newton Method for Optimal Transport
A Truncated Newton Method for Optimal Transport
Mete Kemertas
Amir-massoud Farahmand
Allan D. Jepson
OT
46
0
0
02 Apr 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Y. Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Christophe Vauthier
Quentin Mérigot
Anna Korba
37
0
0
10 Feb 2025
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal
  Transport
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal Transport
Michael Wilson
Tom Needham
A. Srivastava
OT
29
0
0
15 Nov 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
24
0
0
22 Sep 2024
A Sinkhorn Regularized Adversarial Network for Image Guided DEM
  Super-resolution using Frequency Selective Hybrid Graph Transformer
A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer
Subhajit Paul
Ashutosh Gupta
18
0
0
21 Sep 2024
Multimodal Prototyping for cancer survival prediction
Multimodal Prototyping for cancer survival prediction
Andrew H. Song
Richard J. Chen
Guillaume Jaume
Anurag J. Vaidya
Alexander S. Baras
Faisal Mahmood
24
12
0
28 Jun 2024
Estimating Long-term Heterogeneous Dose-response Curve: Generalization
  Bound Leveraging Optimal Transport Weights
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Zhen Peng
Jiecheng Guo
54
3
0
27 Jun 2024
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D
  Generative Modeling
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling
Abril Corona-Figueroa
Hubert P. H. Shum
Chris G. Willcocks
24
0
0
26 Jun 2024
Differentiable Cost-Parameterized Monge Map Estimators
Differentiable Cost-Parameterized Monge Map Estimators
Samuel Howard
George Deligiannidis
Patrick Rebeschini
James Thornton
OT
36
1
0
12 Jun 2024
Progressive Entropic Optimal Transport Solvers
Progressive Entropic Optimal Transport Solvers
Parnian Kassraie
Aram-Alexandre Pooladian
Michal Klein
James Thornton
Jonathan Niles-Weed
Marco Cuturi
OT
30
4
0
07 Jun 2024
SAVA: Scalable Learning-Agnostic Data Valuation
SAVA: Scalable Learning-Agnostic Data Valuation
Samuel Kessler
Tam Le
Vu Nguyen
TDI
51
0
0
03 Jun 2024
On the Convergence of the Sinkhorn-Knopp Algorithm with Sparse Cost
  Matrices
On the Convergence of the Sinkhorn-Knopp Algorithm with Sparse Cost Matrices
Jose Rafael Espinosa Mena
16
0
0
30 May 2024
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling
  Paradigm
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling Paradigm
Xiaobao Wu
Thong Nguyen
Delvin Ce Zhang
William Yang Wang
A. Luu
37
4
0
28 May 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
42
2
0
27 May 2024
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
46
1
0
24 May 2024
Fisher Flow Matching for Generative Modeling over Discrete Data
Fisher Flow Matching for Generative Modeling over Discrete Data
Oscar Davis
Samuel Kessler
Mircea Petrache
.Ismail .Ilkan Ceylan
Michael M. Bronstein
A. Bose
40
16
0
23 May 2024
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With
  Stochastic Gradient Descent and Adaptive Entropic Regularization
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization
Ferdinand Genans
Antoine Godichon-Baggioni
Franccois-Xavier Vialard
Olivier Wintenberger
24
0
0
23 May 2024
Stochastic Learning of Computational Resource Usage as Graph Structured
  Multimarginal Schrödinger Bridge
Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger Bridge
Georgiy A. Bondar
Robert Gifford
L. T. Phan
Abhishek Halder
28
0
0
21 May 2024
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Manh Luong
Khai Nguyen
Nhat Ho
Reza Haf
D.Q. Phung
Lizhen Qu
30
12
0
16 May 2024
Deep MMD Gradient Flow without adversarial training
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
32
7
0
10 May 2024
A New Robust Partial $p$-Wasserstein-Based Metric for Comparing
  Distributions
A New Robust Partial ppp-Wasserstein-Based Metric for Comparing Distributions
S. Raghvendra
Pouyan Shirzadian
Kaiyi Zhang
34
1
0
06 May 2024
Get more for less: Principled Data Selection for Warming Up Fine-Tuning
  in LLMs
Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs
Feiyang Kang
H. Just
Yifan Sun
Himanshu Jahagirdar
Yuanzhi Zhang
Rongxing Du
Anit Kumar Sahu
Ruoxi Jia
54
17
0
05 May 2024
Wasserstein Wormhole: Scalable Optimal Transport Distance with
  Transformers
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
D. Haviv
Russell Z. Kunes
Thomas Dougherty
Cassandra Burdziak
T. Nawy
Anna Gilbert
D. Pe’er
OT
22
5
0
15 Apr 2024
Gaussian-Smoothed Sliced Probability Divergences
Gaussian-Smoothed Sliced Probability Divergences
Mokhtar Z. Alaya
A. Rakotomamonjy
Maxime Bérar
Gilles Gasso
31
0
0
04 Apr 2024
Propensity Score Alignment of Unpaired Multimodal Data
Propensity Score Alignment of Unpaired Multimodal Data
Johnny Xi
Jason S. Hartford
24
2
0
02 Apr 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow
  Matching
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
38
9
0
27 Mar 2024
On the nonconvexity of some push-forward constraints and its
  consequences in machine learning
On the nonconvexity of some push-forward constraints and its consequences in machine learning
Lucas de Lara
Mathis Deronzier
Alberto González Sanz
Virgile Foy
13
0
0
12 Mar 2024
A Sinkhorn-type Algorithm for Constrained Optimal Transport
A Sinkhorn-type Algorithm for Constrained Optimal Transport
Xun Tang
Holakou Rahmanian
Michael Shavlovsky
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
26
1
0
08 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
39
2
0
05 Mar 2024
Sinkhorn Distance Minimization for Knowledge Distillation
Sinkhorn Distance Minimization for Knowledge Distillation
Xiao Cui
Yulei Qin
Yuting Gao
Enwei Zhang
Zihan Xu
Tong Wu
Ke Li
Xing Sun
Wen-gang Zhou
Houqiang Li
62
5
0
27 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic
  Systems
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núnez
28
11
0
06 Feb 2024
On the Affinity, Rationality, and Diversity of Hierarchical Topic
  Modeling
On the Affinity, Rationality, and Diversity of Hierarchical Topic Modeling
Xiaobao Wu
Fengjun Pan
Thong Nguyen
Yichao Feng
Chaoqun Liu
Cong-Duy Nguyen
A. Luu
21
21
0
25 Jan 2024
Neural Sinkhorn Gradient Flow
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
27
5
0
25 Jan 2024
Spectral Clustering for Discrete Distributions
Spectral Clustering for Discrete Distributions
Zixiao Wang
Dong Qiao
Jicong Fan
12
0
0
25 Jan 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
31
4
0
20 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse
  problems for image reconstruction
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
44
0
0
25 Dec 2023
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's
  Distance
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's Distance
A. Sinha
F. Fleuret
22
3
0
16 Nov 2023
Unsupervised approaches based on optimal transport and convex analysis
  for inverse problems in imaging
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M. Carioni
Subhadip Mukherjee
Hongwei Tan
Junqi Tang
MedIm
29
3
0
15 Nov 2023
Structured Transforms Across Spaces with Cost-Regularized Optimal
  Transport
Structured Transforms Across Spaces with Cost-Regularized Optimal Transport
Othmane Sebbouh
Marco Cuturi
Gabriel Peyré
OT
17
4
0
09 Nov 2023
Time-series Generation by Contrastive Imitation
Time-series Generation by Contrastive Imitation
Daniel Jarrett
Ioana Bica
M. Schaar
AI4TS
13
24
0
02 Nov 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
8
9
0
29 Oct 2023
Causal Modeling with Stationary Diffusions
Causal Modeling with Stationary Diffusions
Lars Lorch
Andreas Krause
Bernhard Schölkopf
DiffM
12
7
0
26 Oct 2023
A Specialized Semismooth Newton Method for Kernel-Based Optimal
  Transport
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport
Tianyi Lin
Marco Cuturi
Michael I. Jordan
OT
36
0
0
21 Oct 2023
Optimal Transport for Measures with Noisy Tree Metric
Optimal Transport for Measures with Noisy Tree Metric
Tam Le
Truyen V. Nguyen
Kenji Fukumizu
OT
30
4
0
20 Oct 2023
12345678
Next