Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.00292
Cited By
Learning Generative Models with Sinkhorn Divergences
1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
OT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Learning Generative Models with Sinkhorn Divergences"
50 / 375 papers shown
Title
Flow Matching Ergodic Coverage
Max Muchen Sun
Allison Pinosky
Todd Murphey
28
0
0
24 Apr 2025
Resonances in reflective Hamiltonian Monte Carlo
Namu Kroupa
Gábor Csányi
Will Handley
31
0
0
16 Apr 2025
Towards generalizable single-cell perturbation modeling via the Conditional Monge Gap
Alice Driessen
Benedek Harsanyi
Marianna Rapsomaniki
Jannis Born
AI4CE
34
0
0
11 Apr 2025
A Truncated Newton Method for Optimal Transport
Mete Kemertas
Amir-massoud Farahmand
Allan D. Jepson
OT
46
0
0
02 Apr 2025
Nested Stochastic Gradient Descent for (Generalized) Sinkhorn Distance-Regularized Distributionally Robust Optimization
Y. Yang
Yi Zhou
Zhaosong Lu
49
0
0
29 Mar 2025
Properties of Wasserstein Gradient Flows for the Sliced-Wasserstein Distance
Christophe Vauthier
Quentin Mérigot
Anna Korba
37
0
0
10 Feb 2025
Fused Gromov-Wasserstein Variance Decomposition with Linear Optimal Transport
Michael Wilson
Tom Needham
A. Srivastava
OT
29
0
0
15 Nov 2024
Implicit Dynamical Flow Fusion (IDFF) for Generative Modeling
Mohammad R. Rezaei
Rahul G. Krishnan
Milos R. Popovic
M. Lankarany
DiffM
24
0
0
22 Sep 2024
A Sinkhorn Regularized Adversarial Network for Image Guided DEM Super-resolution using Frequency Selective Hybrid Graph Transformer
Subhajit Paul
Ashutosh Gupta
18
0
0
21 Sep 2024
Multimodal Prototyping for cancer survival prediction
Andrew H. Song
Richard J. Chen
Guillaume Jaume
Anurag J. Vaidya
Alexander S. Baras
Faisal Mahmood
24
12
0
28 Jun 2024
Estimating Long-term Heterogeneous Dose-response Curve: Generalization Bound Leveraging Optimal Transport Weights
Zeqin Yang
Weilin Chen
Ruichu Cai
Yuguang Yan
Zhifeng Hao
Zhipeng Yu
Zhichao Zou
Zhen Peng
Jiecheng Guo
54
3
0
27 Jun 2024
Repeat and Concatenate: 2D to 3D Image Translation with 3D to 3D Generative Modeling
Abril Corona-Figueroa
Hubert P. H. Shum
Chris G. Willcocks
24
0
0
26 Jun 2024
Differentiable Cost-Parameterized Monge Map Estimators
Samuel Howard
George Deligiannidis
Patrick Rebeschini
James Thornton
OT
36
1
0
12 Jun 2024
Progressive Entropic Optimal Transport Solvers
Parnian Kassraie
Aram-Alexandre Pooladian
Michal Klein
James Thornton
Jonathan Niles-Weed
Marco Cuturi
OT
30
4
0
07 Jun 2024
SAVA: Scalable Learning-Agnostic Data Valuation
Samuel Kessler
Tam Le
Vu Nguyen
TDI
51
0
0
03 Jun 2024
On the Convergence of the Sinkhorn-Knopp Algorithm with Sparse Cost Matrices
Jose Rafael Espinosa Mena
16
0
0
30 May 2024
FASTopic: A Fast, Adaptive, Stable, and Transferable Topic Modeling Paradigm
Xiaobao Wu
Thong Nguyen
Delvin Ce Zhang
William Yang Wang
A. Luu
37
4
0
28 May 2024
Diffusion Bridge AutoEncoders for Unsupervised Representation Learning
Yeongmin Kim
Kwanghyeon Lee
Minsang Park
Byeonghu Na
Il-Chul Moon
DiffM
42
2
0
27 May 2024
Statistical and Computational Guarantees of Kernel Max-Sliced Wasserstein Distances
Jie Wang
M. Boedihardjo
Yao Xie
46
1
0
24 May 2024
Fisher Flow Matching for Generative Modeling over Discrete Data
Oscar Davis
Samuel Kessler
Mircea Petrache
.Ismail .Ilkan Ceylan
Michael M. Bronstein
A. Bose
40
16
0
23 May 2024
Semi-Discrete Optimal Transport: Nearly Minimax Estimation With Stochastic Gradient Descent and Adaptive Entropic Regularization
Ferdinand Genans
Antoine Godichon-Baggioni
Franccois-Xavier Vialard
Olivier Wintenberger
24
0
0
23 May 2024
Stochastic Learning of Computational Resource Usage as Graph Structured Multimarginal Schrödinger Bridge
Georgiy A. Bondar
Robert Gifford
L. T. Phan
Abhishek Halder
28
0
0
21 May 2024
Revisiting Deep Audio-Text Retrieval Through the Lens of Transportation
Manh Luong
Khai Nguyen
Nhat Ho
Reza Haf
D.Q. Phung
Lizhen Qu
30
12
0
16 May 2024
Deep MMD Gradient Flow without adversarial training
Alexandre Galashov
Valentin De Bortoli
Arthur Gretton
DiffM
32
7
0
10 May 2024
A New Robust Partial
p
p
p
-Wasserstein-Based Metric for Comparing Distributions
S. Raghvendra
Pouyan Shirzadian
Kaiyi Zhang
34
1
0
06 May 2024
Get more for less: Principled Data Selection for Warming Up Fine-Tuning in LLMs
Feiyang Kang
H. Just
Yifan Sun
Himanshu Jahagirdar
Yuanzhi Zhang
Rongxing Du
Anit Kumar Sahu
Ruoxi Jia
54
17
0
05 May 2024
Wasserstein Wormhole: Scalable Optimal Transport Distance with Transformers
D. Haviv
Russell Z. Kunes
Thomas Dougherty
Cassandra Burdziak
T. Nawy
Anna Gilbert
D. Pe’er
OT
22
5
0
15 Apr 2024
Gaussian-Smoothed Sliced Probability Divergences
Mokhtar Z. Alaya
A. Rakotomamonjy
Maxime Bérar
Gilles Gasso
31
0
0
04 Apr 2024
Propensity Score Alignment of Unpaired Multimodal Data
Johnny Xi
Jason S. Hartford
24
2
0
02 Apr 2024
Conditional Wasserstein Distances with Applications in Bayesian OT Flow Matching
Jannis Chemseddine
Paul Hagemann
Gabriele Steidl
Christian Wald
38
9
0
27 Mar 2024
On the nonconvexity of some push-forward constraints and its consequences in machine learning
Lucas de Lara
Mathis Deronzier
Alberto González Sanz
Virgile Foy
13
0
0
12 Mar 2024
A Sinkhorn-type Algorithm for Constrained Optimal Transport
Xun Tang
Holakou Rahmanian
Michael Shavlovsky
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
26
1
0
08 Mar 2024
On a Neural Implementation of Brenier's Polar Factorization
Nina Vesseron
Marco Cuturi
39
2
0
05 Mar 2024
Sinkhorn Distance Minimization for Knowledge Distillation
Xiao Cui
Yulei Qin
Yuting Gao
Enwei Zhang
Zihan Xu
Tong Wu
Ke Li
Xing Sun
Wen-gang Zhou
Houqiang Li
62
5
0
27 Feb 2024
DySLIM: Dynamics Stable Learning by Invariant Measure for Chaotic Systems
Yair Schiff
Zhong Yi Wan
Jeffrey B. Parker
Stephan Hoyer
Volodymyr Kuleshov
Fei Sha
Leonardo Zepeda-Núnez
28
11
0
06 Feb 2024
On the Affinity, Rationality, and Diversity of Hierarchical Topic Modeling
Xiaobao Wu
Fengjun Pan
Thong Nguyen
Yichao Feng
Chaoqun Liu
Cong-Duy Nguyen
A. Luu
21
21
0
25 Jan 2024
Neural Sinkhorn Gradient Flow
Huminhao Zhu
Fangyikang Wang
Chao Zhang
Han Zhao
Hui Qian
27
5
0
25 Jan 2024
Spectral Clustering for Discrete Distributions
Zixiao Wang
Dong Qiao
Jicong Fan
12
0
0
25 Jan 2024
Accelerating Sinkhorn Algorithm with Sparse Newton Iterations
Xun Tang
Michael Shavlovsky
Holakou Rahmanian
Elisa Tardini
K. K. Thekumparampil
Tesi Xiao
Lexing Ying
OT
31
4
0
20 Jan 2024
Learning from small data sets: Patch-based regularizers in inverse problems for image reconstruction
Moritz Piening
Fabian Altekrüger
J. Hertrich
Paul Hagemann
Andrea Walther
Gabriele Steidl
24
6
0
27 Dec 2023
PULASki: Learning inter-rater variability using statistical distances to improve probabilistic segmentation
S. Chatterjee
Franziska Gaidzik
Alessandro Sciarra
Hendrik Mattern
G. Janiga
Oliver Speck
Andreas Nürnberger
S. Pathiraja
44
0
0
25 Dec 2023
Differentially Private Gradient Flow based on the Sliced Wasserstein Distance
Ilana Sebag
Muni Sreenivas Pydi
Jean-Yves Franceschi
Alain Rakotomamonjy
Mike Gartrell
Jamal Atif
Alexandre Allauzen
24
2
0
13 Dec 2023
DeepEMD: A Transformer-based Fast Estimation of the Earth Mover's Distance
A. Sinha
F. Fleuret
22
3
0
16 Nov 2023
Unsupervised approaches based on optimal transport and convex analysis for inverse problems in imaging
M. Carioni
Subhadip Mukherjee
Hongwei Tan
Junqi Tang
MedIm
29
3
0
15 Nov 2023
Structured Transforms Across Spaces with Cost-Regularized Optimal Transport
Othmane Sebbouh
Marco Cuturi
Gabriel Peyré
OT
17
4
0
09 Nov 2023
Time-series Generation by Contrastive Imitation
Daniel Jarrett
Ioana Bica
M. Schaar
AI4TS
13
24
0
02 Nov 2023
Estimating the Rate-Distortion Function by Wasserstein Gradient Descent
Yibo Yang
Stephan Eckstein
Marcel Nutz
Stephan Mandt
8
9
0
29 Oct 2023
Causal Modeling with Stationary Diffusions
Lars Lorch
Andreas Krause
Bernhard Schölkopf
DiffM
12
7
0
26 Oct 2023
A Specialized Semismooth Newton Method for Kernel-Based Optimal Transport
Tianyi Lin
Marco Cuturi
Michael I. Jordan
OT
36
0
0
21 Oct 2023
Optimal Transport for Measures with Noisy Tree Metric
Tam Le
Truyen V. Nguyen
Kenji Fukumizu
OT
30
4
0
20 Oct 2023
1
2
3
4
5
6
7
8
Next