ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXivPDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 375 papers shown
Title
Re-evaluating Word Mover's Distance
Re-evaluating Word Mover's Distance
Ryoma Sato
M. Yamada
H. Kashima
28
23
0
30 May 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
  Kernels
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Yufan Zhou
Changyou Chen
Jinhui Xu
9
2
0
10 May 2021
Finite sample approximations of exact and entropic Wasserstein distances
  between covariance operators and Gaussian processes
Finite sample approximations of exact and entropic Wasserstein distances between covariance operators and Gaussian processes
H. Q. Minh
17
2
0
26 Apr 2021
Fast ABC with joint generative modelling and subset simulation
Fast ABC with joint generative modelling and subset simulation
Eliane Maalouf
D. Ginsbourger
N. Linde
24
0
0
16 Apr 2021
Landmarks Augmentation with Manifold-Barycentric Oversampling
Landmarks Augmentation with Manifold-Barycentric Oversampling
Iaroslav Bespalov
N. Buzun
Oleg Kachan
Dmitry V. Dylov
MedIm
29
4
0
02 Apr 2021
AlignMixup: Improving Representations By Interpolating Aligned Features
AlignMixup: Improving Representations By Interpolating Aligned Features
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
WSOL
25
61
0
29 Mar 2021
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
  Solution
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical Solution
Bahar Taşkesen
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
OT
11
23
0
10 Mar 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain Adaptation
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
16
146
0
05 Mar 2021
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
16
48
0
02 Mar 2021
Manifold optimization for non-linear optimal transport problems
Manifold optimization for non-linear optimal transport problems
Bamdev Mishra
N. Satyadev
Hiroyuki Kasai
Pratik Jawanpuria
OT
6
10
0
01 Mar 2021
Mitigating Domain Mismatch in Face Recognition Using Style Matching
Mitigating Domain Mismatch in Face Recognition Using Style Matching
Chun-Hsien Lin
Bing-Fei Wu
CVBM
13
3
0
26 Feb 2021
Diffusion Earth Mover's Distance and Distribution Embeddings
Diffusion Earth Mover's Distance and Distribution Embeddings
Alexander Tong
G. Huguet
A. Natik
Kincaid MacDonald
Manik Kuchroo
Ronald R. Coifman
Guy Wolf
Smita Krishnaswamy
MedIm
6
29
0
25 Feb 2021
Improving Approximate Optimal Transport Distances using Quantization
Improving Approximate Optimal Transport Distances using Quantization
Gaspard Beugnot
Aude Genevay
Kristjan Greenewald
Justin Solomon
OT
MQ
146
9
0
25 Feb 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein Barycenters
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
14
12
0
24 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal Transport
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
39
66
0
15 Feb 2021
Sliced Multi-Marginal Optimal Transport
Sliced Multi-Marginal Optimal Transport
Samuel N. Cohen
Alexander Terenin
Yannik Pitcan
Brandon Amos
M. Deisenroth
K. S. S. Kumar
OT
11
8
0
14 Feb 2021
On Robust Optimal Transport: Computational Complexity and Barycenter
  Computation
On Robust Optimal Transport: Computational Complexity and Barycenter Computation
Khang Le
Huy Le Nguyen
Quang H. Nguyen
Tung Pham
Hung Bui
Nhat Ho
OT
20
37
0
13 Feb 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein Distance
Jie Wang
Rui Gao
Yao Xie
14
19
0
12 Feb 2021
Unsupervised Ground Metric Learning using Wasserstein Singular Vectors
Unsupervised Ground Metric Learning using Wasserstein Singular Vectors
Geert-Jan Huizing
Laura Cantini
Gabriel Peyré
SSL
OT
20
4
0
11 Feb 2021
On Transportation of Mini-batches: A Hierarchical Approach
On Transportation of Mini-batches: A Hierarchical Approach
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
13
18
0
11 Feb 2021
On the Existence of Optimal Transport Gradient for Learning Generative
  Models
On the Existence of Optimal Transport Gradient for Learning Generative Models
Antoine Houdard
Arthur Leclaire
Nicolas Papadakis
Julien Rabin
OT
GAN
6
6
0
10 Feb 2021
Conditional Loss and Deep Euler Scheme for Time Series Generation
Conditional Loss and Deep Euler Scheme for Time Series Generation
Carl Remlinger
Joseph Mikael
Romuald Elie
DiffM
19
12
0
10 Feb 2021
Estimating 2-Sinkhorn Divergence between Gaussian Processes from
  Finite-Dimensional Marginals
Estimating 2-Sinkhorn Divergence between Gaussian Processes from Finite-Dimensional Marginals
Anton Mallasto
OT
19
1
0
05 Feb 2021
Optimal Transport as a Defense Against Adversarial Attacks
Optimal Transport as a Defense Against Adversarial Attacks
Quentin Bouniot
Romaric Audigier
Angélique Loesch
AAML
OOD
8
9
0
05 Feb 2021
Learning High Dimensional Wasserstein Geodesics
Learning High Dimensional Wasserstein Geodesics
Shu Liu
Shaojun Ma
Yongxin Chen
H. Zha
Haomin Zhou
17
8
0
05 Feb 2021
A Dimension-free Computational Upper-bound for Smooth Optimal Transport
  Estimation
A Dimension-free Computational Upper-bound for Smooth Optimal Transport Estimation
A. Vacher
Boris Muzellec
Alessandro Rudi
Francis R. Bach
François-Xavier Vialard
OT
17
26
0
13 Jan 2021
Minibatch optimal transport distances; analysis and applications
Minibatch optimal transport distances; analysis and applications
Kilian Fatras
Younes Zine
Szymon Majewski
Rémi Flamary
Rémi Gribonval
Nicolas Courty
OT
63
53
0
05 Jan 2021
Convergence and finite sample approximations of entropic regularized
  Wasserstein distances in Gaussian and RKHS settings
Convergence and finite sample approximations of entropic regularized Wasserstein distances in Gaussian and RKHS settings
M. H. Quang
46
5
0
05 Jan 2021
Exploiting Chain Rule and Bayes' Theorem to Compare Probability
  Distributions
Exploiting Chain Rule and Bayes' Theorem to Compare Probability Distributions
Huangjie Zheng
Mingyuan Zhou
OT
22
29
0
28 Dec 2020
Generative Learning With Euler Particle Transport
Generative Learning With Euler Particle Transport
Yuan Gao
Jian Huang
Yuling Jiao
Jin Liu
Xiliang Lu
J. Yang
OT
15
2
0
11 Dec 2020
Model Compression Using Optimal Transport
Model Compression Using Optimal Transport
Suhas Lohit
Michael J. Jones
10
8
0
07 Dec 2020
Aligning Hyperbolic Representations: an Optimal Transport-based approach
Aligning Hyperbolic Representations: an Optimal Transport-based approach
Andrés Hoyos-Idrobo
OT
6
8
0
02 Dec 2020
Entropic regularization of Wasserstein distance between
  infinite-dimensional Gaussian measures and Gaussian processes
Entropic regularization of Wasserstein distance between infinite-dimensional Gaussian measures and Gaussian processes
M. H. Quang
13
13
0
15 Nov 2020
A contribution to Optimal Transport on incomparable spaces
A contribution to Optimal Transport on incomparable spaces
Titouan Vayer
OT
17
19
0
09 Nov 2020
Sinkhorn Natural Gradient for Generative Models
Sinkhorn Natural Gradient for Generative Models
Zebang Shen
Zhenfu Wang
Alejandro Ribeiro
Hamed Hassani
GAN
DiffM
8
12
0
09 Nov 2020
Efficient Robust Optimal Transport with Application to Multi-Label
  Classification
Efficient Robust Optimal Transport with Application to Multi-Label Classification
Pratik Jawanpuria
N. Satyadev
Bamdev Mishra
OT
6
3
0
22 Oct 2020
Statistical guarantees for generative models without domination
Statistical guarantees for generative models without domination
Nicolas Schreuder
Victor-Emmanuel Brunel
A. Dalalyan
GAN
57
34
0
19 Oct 2020
Differentiable Divergences Between Time Series
Differentiable Divergences Between Time Series
Mathieu Blondel
A. Mensch
Jean-Philippe Vert
AI4TS
40
38
0
16 Oct 2020
Improving Text Generation with Student-Forcing Optimal Transport
Improving Text Generation with Student-Forcing Optimal Transport
Guoyin Wang
Chunyuan Li
Jianqiao Li
Hao Fu
Yuh-Chen Lin
...
Ruiyi Zhang
Wenlin Wang
Dinghan Shen
Qian Yang
Lawrence Carin
OT
22
17
0
12 Oct 2020
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Learning Deep-Latent Hierarchies by Stacking Wasserstein Autoencoders
Benoit Gaujac
Ilya Feige
David Barber
DiffM
BDL
12
0
0
07 Oct 2020
Unpaired Deep Learning for Accelerated MRI using Optimal Transport
  Driven CycleGAN
Unpaired Deep Learning for Accelerated MRI using Optimal Transport Driven CycleGAN
Gyutaek Oh
Byeongsu Sim
Hyungjin Chung
Leonard Sunwoo
J. C. Ye
OOD
MedIm
22
69
0
29 Aug 2020
Quantum versus Classical Generative Modelling in Finance
Quantum versus Classical Generative Modelling in Finance
Brian Coyle
Maxwell P. Henderson
Justin Chan Jin Le
N. Kumar
M. Paini
E. Kashefi
6
59
0
03 Aug 2020
Generalization Properties of Optimal Transport GANs with Latent
  Distribution Learning
Generalization Properties of Optimal Transport GANs with Latent Distribution Learning
Giulia Luise
Massimiliano Pontil
C. Ciliberto
GAN
OT
12
22
0
29 Jul 2020
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
FLOT: Scene Flow on Point Clouds Guided by Optimal Transport
Gilles Puy
Alexandre Boulch
Renaud Marlet
3DPC
OT
115
183
0
22 Jul 2020
A Hölderian backtracking method for min-max and min-min problems
A Hölderian backtracking method for min-max and min-min problems
Jérôme Bolte
Lilian E. Glaudin
Edouard Pauwels
M. Serrurier
29
9
0
17 Jul 2020
Estimating Barycenters of Measures in High Dimensions
Estimating Barycenters of Measures in High Dimensions
Samuel N. Cohen
Michael Arbel
M. Deisenroth
8
22
0
14 Jul 2020
Representation Transfer by Optimal Transport
Representation Transfer by Optimal Transport
Xuhong Li
Yves Grandvalet
Rémi Flamary
Nicolas Courty
Dejing Dou
OT
11
8
0
13 Jul 2020
Scalable Computations of Wasserstein Barycenter via Input Convex Neural
  Networks
Scalable Computations of Wasserstein Barycenter via Input Convex Neural Networks
JiaoJiao Fan
Amirhossein Taghvaei
Yongxin Chen
26
56
0
08 Jul 2020
Learning to Generate Novel Domains for Domain Generalization
Learning to Generate Novel Domains for Domain Generalization
Kaiyang Zhou
Yongxin Yang
Timothy M. Hospedales
Tao Xiang
OOD
23
444
0
07 Jul 2020
Online Domain Adaptation for Occupancy Mapping
Online Domain Adaptation for Occupancy Mapping
A. Tompkins
Ransalu Senanayake
F. Ramos
8
11
0
01 Jul 2020
Previous
12345678
Next