ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences
v1v2v3 (latest)

Learning Generative Models with Sinkhorn Divergences

International Conference on Artificial Intelligence and Statistics (AISTATS), 2017
1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXiv (abs)PDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

50 / 399 papers shown
Title
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth
  Mover's Distance
Embedding Signals on Knowledge Graphs with Unbalanced Diffusion Earth Mover's DistanceIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2021
Alexander Tong
G. Huguet
Dennis L. Shung
A. Natik
Manik Kuchroo
Guillaume Lajoie
Guy Wolf
Smita Krishnaswamy
135
9
0
26 Jul 2021
AASAE: Augmentation-Augmented Stochastic Autoencoders
AASAE: Augmentation-Augmented Stochastic Autoencoders
William Falcon
A. Jha
Teddy Koker
Dong Wang
157
1
0
26 Jul 2021
Optimal transport-based machine learning to match specific patterns:
  application to the detection of molecular regulation patterns in omics data
Optimal transport-based machine learning to match specific patterns: application to the detection of molecular regulation patterns in omics data
T. Nguyen
Warith Harchaoui
Lucile Mégret
Cloé Mendoza
Olivier Bouaziz
C. Néri
Antoine Chambaz
118
1
0
21 Jul 2021
Scalable Optimal Transport in High Dimensions for Graph Distances,
  Embedding Alignment, and More
Scalable Optimal Transport in High Dimensions for Graph Distances, Embedding Alignment, and MoreInternational Conference on Machine Learning (ICML), 2021
Johannes Klicpera
Marten Lienen
Stephan Günnemann
OT
171
14
0
14 Jul 2021
Hidden Convexity of Wasserstein GANs: Interpretable Generative Models
  with Closed-Form Solutions
Hidden Convexity of Wasserstein GANs: Interpretable Generative Models with Closed-Form Solutions
Arda Sahiner
Tolga Ergen
Batu Mehmet Ozturkler
Burak Bartan
John M. Pauly
Morteza Mardani
Mert Pilanci
GAN
299
21
0
12 Jul 2021
A stochastic Gauss-Newton algorithm for regularized semi-discrete
  optimal transport
A stochastic Gauss-Newton algorithm for regularized semi-discrete optimal transport
Bernard Bercu
Jérémie Bigot
S. Gadat
Emilia Siviero
239
7
0
12 Jul 2021
Direct Measure Matching for Crowd Counting
Direct Measure Matching for Crowd Counting
Hui Lin
Xiaopeng Hong
Zhiheng Ma
Xing Wei
Yunfeng Qiu
Yaowei Wang
Yihong Gong
OT
135
48
0
04 Jul 2021
Deep Inertial Navigation using Continuous Domain Adaptation and Optimal
  Transport
Deep Inertial Navigation using Continuous Domain Adaptation and Optimal Transport
Mohammed Alloulah
Maximilian Arnold
Anton Isopoussu
OOD
134
2
0
29 Jun 2021
Asymptotics for semi-discrete entropic optimal transport
Asymptotics for semi-discrete entropic optimal transportSIAM Journal on Mathematical Analysis (SIAM J. Math. Anal.), 2021
Jason M. Altschuler
Jonathan Niles-Weed
Austin J. Stromme
116
33
0
22 Jun 2021
Discrepancy-based Inference for Intractable Generative Models using
  Quasi-Monte Carlo
Discrepancy-based Inference for Intractable Generative Models using Quasi-Monte CarloElectronic Journal of Statistics (EJS), 2021
Ziang Niu
J. Meier
F. Briol
298
13
0
22 Jun 2021
Manifold Matching via Deep Metric Learning for Generative Modeling
Manifold Matching via Deep Metric Learning for Generative ModelingIEEE International Conference on Computer Vision (ICCV), 2021
Mengyu Dai
Haibin Hang
GAN
150
12
0
20 Jun 2021
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint
  Support
KALE Flow: A Relaxed KL Gradient Flow for Probabilities with Disjoint Support
Pierre Glaser
Michael Arbel
Arthur Gretton
217
39
0
16 Jun 2021
Non-asymptotic convergence bounds for Wasserstein approximation using
  point clouds
Non-asymptotic convergence bounds for Wasserstein approximation using point cloudsNeural Information Processing Systems (NeurIPS), 2021
Q. Mérigot
F. Santambrogio
Clément Sarrazin
68
33
0
15 Jun 2021
Learning Revenue-Maximizing Auctions With Differentiable Matching
Learning Revenue-Maximizing Auctions With Differentiable MatchingInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Michael J. Curry
Uro Lyi
Tom Goldstein
John P. Dickerson
158
22
0
15 Jun 2021
A Wasserstein Minimax Framework for Mixed Linear Regression
A Wasserstein Minimax Framework for Mixed Linear RegressionInternational Conference on Machine Learning (ICML), 2021
Theo Diamandis
Yonina C. Eldar
Alireza Fallah
Farzan Farnia
Asuman Ozdaglar
163
7
0
14 Jun 2021
Separation Results between Fixed-Kernel and Feature-Learning Probability
  Metrics
Separation Results between Fixed-Kernel and Feature-Learning Probability MetricsNeural Information Processing Systems (NeurIPS), 2021
Carles Domingo-Enrich
Youssef Mroueh
185
1
0
10 Jun 2021
Conditional COT-GAN for Video Prediction with Kernel Smoothing
Conditional COT-GAN for Video Prediction with Kernel Smoothing
Tianlin Xu
Beatrice Acciaio
GANAI4TSCML
103
6
0
10 Jun 2021
Partial Wasserstein and Maximum Mean Discrepancy distances for bridging
  the gap between outlier detection and drift detection
Partial Wasserstein and Maximum Mean Discrepancy distances for bridging the gap between outlier detection and drift detection
T. Viehmann
69
8
0
09 Jun 2021
Neural Monge Map estimation and its applications
Neural Monge Map estimation and its applications
JiaoJiao Fan
Shu Liu
Shaojun Ma
Haomin Zhou
Yongxin Chen
OT
318
32
0
07 Jun 2021
k-Mixup Regularization for Deep Learning via Optimal Transport
k-Mixup Regularization for Deep Learning via Optimal Transport
Kristjan Greenewald
Anming Gu
Mikhail Yurochkin
Justin Solomon
Edward Chien
240
19
0
05 Jun 2021
A Survey on Optimal Transport for Machine Learning: Theory and
  Applications
A Survey on Optimal Transport for Machine Learning: Theory and Applications
Luis Caicedo Torres
Luiz Manella Pereira
M. Amini
OODOT
177
56
0
03 Jun 2021
MICo: Improved representations via sampling-based state similarity for
  Markov decision processes
MICo: Improved representations via sampling-based state similarity for Markov decision processesNeural Information Processing Systems (NeurIPS), 2021
Pablo Samuel Castro
Tyler Kastner
Prakash Panangaden
Mark Rowland
403
43
0
03 Jun 2021
Optimizing Functionals on the Space of Probabilities with Input Convex
  Neural Networks
Optimizing Functionals on the Space of Probabilities with Input Convex Neural Networks
David Alvarez-Melis
Yair Schiff
Youssef Mroueh
272
63
0
01 Jun 2021
Diffusion Schrödinger Bridge with Applications to Score-Based
  Generative Modeling
Diffusion Schrödinger Bridge with Applications to Score-Based Generative ModelingNeural Information Processing Systems (NeurIPS), 2021
Valentin De Bortoli
James Thornton
J. Heng
Arnaud Doucet
DiffMOT
527
594
0
01 Jun 2021
Re-evaluating Word Mover's Distance
Re-evaluating Word Mover's DistanceInternational Conference on Machine Learning (ICML), 2021
Ryoma Sato
M. Yamada
H. Kashima
376
25
0
30 May 2021
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck
  Kernels
Learning High-Dimensional Distributions with Latent Neural Fokker-Planck Kernels
Jiuxiang Gu
Changyou Chen
Jinhui Xu
188
2
0
10 May 2021
Finite sample approximations of exact and entropic Wasserstein distances
  between covariance operators and Gaussian processes
Finite sample approximations of exact and entropic Wasserstein distances between covariance operators and Gaussian processes
H. Q. Minh
204
3
0
26 Apr 2021
Fast ABC with joint generative modelling and subset simulation
Fast ABC with joint generative modelling and subset simulationInternational Conference on Machine Learning, Optimization, and Data Science (MOD), 2021
Eliane Maalouf
D. Ginsbourger
N. Linde
176
0
0
16 Apr 2021
Landmarks Augmentation with Manifold-Barycentric Oversampling
Landmarks Augmentation with Manifold-Barycentric OversamplingIEEE Access (IEEE Access), 2021
Iaroslav Bespalov
N. Buzun
Oleg Kachan
Dmitry V. Dylov
MedIm
171
4
0
02 Apr 2021
AlignMixup: Improving Representations By Interpolating Aligned Features
AlignMixup: Improving Representations By Interpolating Aligned FeaturesComputer Vision and Pattern Recognition (CVPR), 2021
Shashanka Venkataramanan
Ewa Kijak
Laurent Amsaleg
Yannis Avrithis
WSOL
254
73
0
29 Mar 2021
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical
  Solution
Semi-Discrete Optimal Transport: Hardness, Regularization and Numerical SolutionMathematical programming (Math. Program.), 2021
Bahar Taşkesen
Soroosh Shafieezadeh-Abadeh
Daniel Kuhn
OT
218
35
0
10 Mar 2021
Unbalanced minibatch Optimal Transport; applications to Domain
  Adaptation
Unbalanced minibatch Optimal Transport; applications to Domain AdaptationInternational Conference on Machine Learning (ICML), 2021
Kilian Fatras
Thibault Séjourné
Nicolas Courty
Rémi Flamary
OT
176
174
0
05 Mar 2021
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein
  Distance)
Wasserstein GANs Work Because They Fail (to Approximate the Wasserstein Distance)
Jan Stanczuk
Christian Etmann
L. Kreusser
Carola-Bibiane Schönlieb
GAN
285
52
0
02 Mar 2021
Manifold optimization for non-linear optimal transport problems
Manifold optimization for non-linear optimal transport problems
Bamdev Mishra
N. Satyadev
Hiroyuki Kasai
Pratik Jawanpuria
OT
193
12
0
01 Mar 2021
Mitigating Domain Mismatch in Face Recognition Using Style Matching
Mitigating Domain Mismatch in Face Recognition Using Style MatchingNeurocomputing (Neurocomputing), 2021
Chun-Hsien Lin
Bing-Fei Wu
CVBM
154
4
0
26 Feb 2021
Diffusion Earth Mover's Distance and Distribution Embeddings
Diffusion Earth Mover's Distance and Distribution EmbeddingsInternational Conference on Machine Learning (ICML), 2021
Alexander Tong
G. Huguet
A. Natik
Kincaid MacDonald
Manik Kuchroo
Ronald R. Coifman
Guy Wolf
Smita Krishnaswamy
MedIm
127
32
0
25 Feb 2021
Improving Approximate Optimal Transport Distances using Quantization
Improving Approximate Optimal Transport Distances using QuantizationConference on Uncertainty in Artificial Intelligence (UAI), 2021
Gaspard Beugnot
Aude Genevay
Kristjan Greenewald
Justin Solomon
OTMQ
577
11
0
25 Feb 2021
Learning to Generate Wasserstein Barycenters
Learning to Generate Wasserstein BarycentersJournal of Mathematical Imaging and Vision (JMIV), 2021
Julien Lacombe
Julie Digne
Nicolas Courty
Nicolas Bonneel
111
12
0
24 Feb 2021
Differentiable Particle Filtering via Entropy-Regularized Optimal
  Transport
Differentiable Particle Filtering via Entropy-Regularized Optimal TransportInternational Conference on Machine Learning (ICML), 2021
Adrien Corenflos
James Thornton
George Deligiannidis
Arnaud Doucet
OT
209
86
0
15 Feb 2021
Sliced Multi-Marginal Optimal Transport
Sliced Multi-Marginal Optimal Transport
Samuel N. Cohen
Alexander Terenin
Yannik Pitcan
Brandon Amos
M. Deisenroth
K. S. S. Kumar
OT
137
9
0
14 Feb 2021
On Robust Optimal Transport: Computational Complexity and Barycenter
  Computation
On Robust Optimal Transport: Computational Complexity and Barycenter ComputationNeural Information Processing Systems (NeurIPS), 2021
Khang Le
Huy Le Nguyen
Quang H. Nguyen
Tung Pham
Hung Bui
Nhat Ho
OT
163
41
0
13 Feb 2021
Two-sample Test with Kernel Projected Wasserstein Distance
Two-sample Test with Kernel Projected Wasserstein DistanceInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Jie Wang
Rui Gao
Yao Xie
296
22
0
12 Feb 2021
Unsupervised Ground Metric Learning using Wasserstein Singular Vectors
Unsupervised Ground Metric Learning using Wasserstein Singular VectorsInternational Conference on Machine Learning (ICML), 2021
Geert-Jan Huizing
Laura Cantini
Gabriel Peyré
SSLOT
184
8
0
11 Feb 2021
On Transportation of Mini-batches: A Hierarchical Approach
On Transportation of Mini-batches: A Hierarchical ApproachInternational Conference on Machine Learning (ICML), 2021
Khai Nguyen
Dang Nguyen
Quoc Nguyen
Tung Pham
Hung Bui
Dinh Q. Phung
Trung Le
Nhat Ho
OT
190
19
0
11 Feb 2021
On the Existence of Optimal Transport Gradient for Learning Generative
  Models
On the Existence of Optimal Transport Gradient for Learning Generative Models
Antoine Houdard
Arthur Leclaire
Nicolas Papadakis
Julien Rabin
OTGAN
126
7
0
10 Feb 2021
Conditional Loss and Deep Euler Scheme for Time Series Generation
Conditional Loss and Deep Euler Scheme for Time Series GenerationAAAI Conference on Artificial Intelligence (AAAI), 2021
Carl Remlinger
Joseph Mikael
Romuald Elie
DiffM
275
15
0
10 Feb 2021
Estimating 2-Sinkhorn Divergence between Gaussian Processes from
  Finite-Dimensional Marginals
Estimating 2-Sinkhorn Divergence between Gaussian Processes from Finite-Dimensional Marginals
Anton Mallasto
OT
117
1
0
05 Feb 2021
Optimal Transport as a Defense Against Adversarial Attacks
Optimal Transport as a Defense Against Adversarial AttacksInternational Conference on Pattern Recognition (ICPR), 2021
Quentin Bouniot
Romaric Audigier
Angélique Loesch
AAMLOOD
89
9
0
05 Feb 2021
Learning High Dimensional Wasserstein Geodesics
Learning High Dimensional Wasserstein Geodesics
Shu Liu
Shaojun Ma
Yongxin Chen
H. Zha
Haomin Zhou
273
10
0
05 Feb 2021
A Dimension-free Computational Upper-bound for Smooth Optimal Transport
  Estimation
A Dimension-free Computational Upper-bound for Smooth Optimal Transport EstimationAnnual Conference Computational Learning Theory (COLT), 2021
A. Vacher
Boris Muzellec
Alessandro Rudi
Francis R. Bach
François-Xavier Vialard
OT
197
30
0
13 Jan 2021
Previous
12345678
Next