ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.00292
  4. Cited By
Learning Generative Models with Sinkhorn Divergences

Learning Generative Models with Sinkhorn Divergences

1 June 2017
Aude Genevay
Gabriel Peyré
Marco Cuturi
    OT
ArXivPDFHTML

Papers citing "Learning Generative Models with Sinkhorn Divergences"

25 / 375 papers shown
Title
Entropic optimal transport is maximum-likelihood deconvolution
Entropic optimal transport is maximum-likelihood deconvolution
Philippe Rigollet
Jonathan Niles-Weed
OT
23
76
0
14 Sep 2018
Second-order Democratic Aggregation
Second-order Democratic Aggregation
Tsung-Yu Lin
Subhransu Maji
Piotr Koniusz
11
30
0
22 Aug 2018
Neural Network Encapsulation
Neural Network Encapsulation
Hongyang Li
Xiaoyang Guo
Bo Dai
Wanli Ouyang
Xiaogang Wang
11
51
0
11 Aug 2018
Towards Optimal Transport with Global Invariances
Towards Optimal Transport with Global Invariances
David Alvarez-Melis
Stefanie Jegelka
Tommi Jaakkola
OT
16
71
0
25 Jun 2018
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal
  Transport and Diffusions
Sliced-Wasserstein Flows: Nonparametric Generative Modeling via Optimal Transport and Diffusions
Antoine Liutkus
Umut Simsekli
Szymon Majewski
Alain Durmus
Fabian-Robert Stöter
DiffM
19
119
0
21 Jun 2018
Differential Properties of Sinkhorn Approximation for Learning with
  Wasserstein Distance
Differential Properties of Sinkhorn Approximation for Learning with Wasserstein Distance
Giulia Luise
Alessandro Rudi
Massimiliano Pontil
C. Ciliberto
OT
24
130
0
30 May 2018
On gradient regularizers for MMD GANs
On gradient regularizers for MMD GANs
Michael Arbel
Danica J. Sutherland
Mikolaj Binkowski
A. Gretton
9
93
0
29 May 2018
Wasserstein Variational Inference
Wasserstein Variational Inference
L. Ambrogioni
Umut Güçlü
Yağmur Güçlütürk
Max Hinne
E. Maris
Marcel van Gerven
BDL
DRL
11
42
0
29 May 2018
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Unsupervised Alignment of Embeddings with Wasserstein Procrustes
Edouard Grave
Armand Joulin
Quentin Berthet
9
198
0
29 May 2018
Optimal Transport for structured data with application on graphs
Optimal Transport for structured data with application on graphs
Titouan Vayer
Laetitia Chapel
Rémi Flamary
R. Tavenard
Nicolas Courty
OT
11
263
0
23 May 2018
Wasserstein Measure Coresets
Wasserstein Measure Coresets
Sebastian Claici
Aude Genevay
Justin Solomon
13
13
0
18 May 2018
Generative Adversarial Networks (GANs): What it can generate and What it
  cannot?
Generative Adversarial Networks (GANs): What it can generate and What it cannot?
P Manisha
Sujit Gujar
GAN
18
0
0
31 Mar 2018
Improving GANs Using Optimal Transport
Improving GANs Using Optimal Transport
Tim Salimans
Han Zhang
Alec Radford
Dimitris N. Metaxas
OT
GAN
6
322
0
15 Mar 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
14
2,111
0
01 Mar 2018
Distance Measure Machines
Distance Measure Machines
A. Rakotomamonjy
Abraham Traoré
Maxime Bérar
Rémi Flamary
Nicolas Courty
7
12
0
01 Mar 2018
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Learning Latent Permutations with Gumbel-Sinkhorn Networks
Gonzalo E. Mena
David Belanger
Scott W. Linderman
Jasper Snoek
33
259
0
23 Feb 2018
On the Convergence and Robustness of Training GANs with Regularized
  Optimal Transport
On the Convergence and Robustness of Training GANs with Regularized Optimal Transport
Maziar Sanjabi
Jimmy Ba
Meisam Razaviyayn
J. Lee
GAN
17
137
0
22 Feb 2018
Learning to Match via Inverse Optimal Transport
Learning to Match via Inverse Optimal Transport
Ruilin Li
X. Ye
Haomin Zhou
H. Zha
FedML
13
49
0
10 Feb 2018
Innovative Non-parametric Texture Synthesis via Patch Permutations
Innovative Non-parametric Texture Synthesis via Patch Permutations
Ryan Webster
15
4
0
14 Jan 2018
Demystifying MMD GANs
Demystifying MMD GANs
Mikolaj Binkowski
Danica J. Sutherland
Michael Arbel
A. Gretton
EGVM
40
1,446
0
04 Jan 2018
Sobolev GAN
Sobolev GAN
Youssef Mroueh
Chun-Liang Li
Tom Sercu
Anant Raj
Yu Cheng
8
117
0
14 Nov 2017
A unified framework for hard and soft clustering with regularized
  optimal transport
A unified framework for hard and soft clustering with regularized optimal transport
Jean-Frédéric Diebold
Nicolas Papadakis
Arnaud Dessein
Charles-Alban Deledalle
FedML
47
9
0
12 Nov 2017
Parametric Adversarial Divergences are Good Losses for Generative
  Modeling
Parametric Adversarial Divergences are Good Losses for Generative Modeling
Gabriel Huang
Hugo Berard
Ahmed Touati
Gauthier Gidel
Pascal Vincent
Simon Lacoste-Julien
GAN
13
1
0
08 Aug 2017
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised
  non-linear dictionary learning
Wasserstein Dictionary Learning: Optimal Transport-based unsupervised non-linear dictionary learning
M. Schmitz
Matthieu Heitz
Nicolas Bonneel
Fred-Maurice Ngole-Mboula
D. Coeurjolly
Marco Cuturi
Gabriel Peyré
Jean-Luc Starck
OT
18
134
0
07 Aug 2017
Semi-discrete optimal transport - the case p=1
Semi-discrete optimal transport - the case p=1
Valentin N. Hartmann
Dominic Schuhmacher
OT
17
8
0
23 Jun 2017
Previous
12345678