ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.04599
  4. Cited By
On Calibration of Modern Neural Networks

On Calibration of Modern Neural Networks

14 June 2017
Chuan Guo
Geoff Pleiss
Yu Sun
Kilian Q. Weinberger
    UQCV
ArXivPDFHTML

Papers citing "On Calibration of Modern Neural Networks"

50 / 1,060 papers shown
Title
Supermasks in Superposition
Supermasks in Superposition
Mitchell Wortsman
Vivek Ramanujan
Rosanne Liu
Aniruddha Kembhavi
Mohammad Rastegari
J. Yosinski
Ali Farhadi
SSL
CLL
22
279
0
26 Jun 2020
Gradient-EM Bayesian Meta-learning
Gradient-EM Bayesian Meta-learning
Yayi Zou
Xiaoqi Lu
BDL
25
16
0
21 Jun 2020
Estimating Model Uncertainty of Neural Networks in Sparse Information
  Form
Estimating Model Uncertainty of Neural Networks in Sparse Information Form
Jongseo Lee
Matthias Humt
Jianxiang Feng
Rudolph Triebel
BDL
UQCV
38
46
0
20 Jun 2020
Calibration of Model Uncertainty for Dropout Variational Inference
Calibration of Model Uncertainty for Dropout Variational Inference
M. Laves
Sontje Ihler
Karl-Philipp Kortmann
T. Ortmaier
BDL
UQCV
32
18
0
20 Jun 2020
Evaluating Prediction-Time Batch Normalization for Robustness under
  Covariate Shift
Evaluating Prediction-Time Batch Normalization for Robustness under Covariate Shift
Zachary Nado
Shreyas Padhy
D. Sculley
Alexander DÁmour
Balaji Lakshminarayanan
Jasper Snoek
OOD
AI4TS
30
238
0
19 Jun 2020
Distribution-free binary classification: prediction sets, confidence
  intervals and calibration
Distribution-free binary classification: prediction sets, confidence intervals and calibration
Chirag Gupta
A. Podkopaev
Aaditya Ramdas
UQCV
27
79
0
18 Jun 2020
Individual Calibration with Randomized Forecasting
Individual Calibration with Randomized Forecasting
Shengjia Zhao
Tengyu Ma
Stefano Ermon
8
57
0
18 Jun 2020
LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World
LiDARsim: Realistic LiDAR Simulation by Leveraging the Real World
S. Manivasagam
Shenlong Wang
K. Wong
Wenyuan Zeng
Mikita Sazanovich
Shuhan Tan
Binh Yang
Wei-Chiu Ma
R. Urtasun
3DPC
8
221
0
16 Jun 2020
Posterior Network: Uncertainty Estimation without OOD Samples via
  Density-Based Pseudo-Counts
Posterior Network: Uncertainty Estimation without OOD Samples via Density-Based Pseudo-Counts
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
UQCV
UD
EDL
BDL
25
169
0
16 Jun 2020
Calibrating Deep Neural Network Classifiers on Out-of-Distribution
  Datasets
Calibrating Deep Neural Network Classifiers on Out-of-Distribution Datasets
Zhihui Shao
Jianyi Yang
Shaolei Ren
OODD
35
11
0
16 Jun 2020
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Neural Ensemble Search for Uncertainty Estimation and Dataset Shift
Sheheryar Zaidi
Arber Zela
T. Elsken
Chris Holmes
Frank Hutter
Yee Whye Teh
OOD
UQCV
18
71
0
15 Jun 2020
Detecting unusual input to neural networks
Detecting unusual input to neural networks
Jörg Martin
Clemens Elster
AAML
14
7
0
15 Jun 2020
A benchmark study on reliable molecular supervised learning via Bayesian
  learning
A benchmark study on reliable molecular supervised learning via Bayesian learning
Doyeong Hwang
Grace Lee
Hanseok Jo
Seyoul Yoon
Seongok Ryu
22
9
0
12 Jun 2020
The Curious Case of Convex Neural Networks
The Curious Case of Convex Neural Networks
S. Sivaprasad
Ankur Singh
Naresh Manwani
Vineet Gandhi
46
26
0
09 Jun 2020
Self-Distillation as Instance-Specific Label Smoothing
Self-Distillation as Instance-Specific Label Smoothing
Zhilu Zhang
M. Sabuncu
12
115
0
09 Jun 2020
An Empirical Analysis of the Impact of Data Augmentation on Knowledge
  Distillation
An Empirical Analysis of the Impact of Data Augmentation on Knowledge Distillation
Deepan Das
Haley Massa
Abhimanyu Kulkarni
Theodoros Rekatsinas
21
18
0
06 Jun 2020
AI Research Considerations for Human Existential Safety (ARCHES)
AI Research Considerations for Human Existential Safety (ARCHES)
Andrew Critch
David M. Krueger
22
50
0
30 May 2020
Global inducing point variational posteriors for Bayesian neural
  networks and deep Gaussian processes
Global inducing point variational posteriors for Bayesian neural networks and deep Gaussian processes
Sebastian W. Ober
Laurence Aitchison
BDL
26
60
0
17 May 2020
Designing Accurate Emulators for Scientific Processes using
  Calibration-Driven Deep Models
Designing Accurate Emulators for Scientific Processes using Calibration-Driven Deep Models
Jayaraman J. Thiagarajan
Bindya Venkatesh
Rushil Anirudh
P. Bremer
J. Gaffney
G. Anderson
B. Spears
8
21
0
05 May 2020
On the Inference Calibration of Neural Machine Translation
On the Inference Calibration of Neural Machine Translation
Shuo Wang
Zhaopeng Tu
Shuming Shi
Yang Liu
19
80
0
03 May 2020
Physarum Powered Differentiable Linear Programming Layers and
  Applications
Physarum Powered Differentiable Linear Programming Layers and Applications
Zihang Meng
Sathya Ravi
Vikas Singh
21
5
0
30 Apr 2020
The Right Tool for the Job: Matching Model and Instance Complexities
The Right Tool for the Job: Matching Model and Instance Complexities
Roy Schwartz
Gabriel Stanovsky
Swabha Swayamdipta
Jesse Dodge
Noah A. Smith
33
167
0
16 Apr 2020
Calibrating Structured Output Predictors for Natural Language Processing
Calibrating Structured Output Predictors for Natural Language Processing
Abhyuday N. Jagannatha
Hong-ye Yu
20
28
0
09 Apr 2020
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and
  Visibility Likelihood
LUVLi Face Alignment: Estimating Landmarks' Location, Uncertainty, and Visibility Likelihood
Abhinav Kumar
Tim K. Marks
Wenxuan Mou
Ye Wang
Michael J. Jones
A. Cherian
T. Koike-Akino
Xiaoming Liu
Chen Feng
CVBM
3DV
17
150
0
06 Apr 2020
Self-Augmentation: Generalizing Deep Networks to Unseen Classes for
  Few-Shot Learning
Self-Augmentation: Generalizing Deep Networks to Unseen Classes for Few-Shot Learning
Jinhwan Seo
Hong G Jung
Seong-Whan Lee
SSL
12
39
0
01 Apr 2020
Regularizing Class-wise Predictions via Self-knowledge Distillation
Regularizing Class-wise Predictions via Self-knowledge Distillation
Sukmin Yun
Jongjin Park
Kimin Lee
Jinwoo Shin
27
274
0
31 Mar 2020
Hybrid Classification and Reasoning for Image-based Constraint Solving
Hybrid Classification and Reasoning for Image-based Constraint Solving
Maxime Mulamba
Jayanta Mandi
Rocsildes Canoy
Tias Guns
33
11
0
24 Mar 2020
On Calibration of Mixup Training for Deep Neural Networks
On Calibration of Mixup Training for Deep Neural Networks
Juan Maroñas
D. Ramos-Castro
Roberto Paredes Palacios
UQCV
25
6
0
22 Mar 2020
Adversarial Robustness on In- and Out-Distribution Improves
  Explainability
Adversarial Robustness on In- and Out-Distribution Improves Explainability
Maximilian Augustin
Alexander Meinke
Matthias Hein
OOD
75
98
0
20 Mar 2020
MINT: Deep Network Compression via Mutual Information-based Neuron
  Trimming
MINT: Deep Network Compression via Mutual Information-based Neuron Trimming
Madan Ravi Ganesh
Jason J. Corso
S. Y. Sekeh
MQ
35
15
0
18 Mar 2020
A comprehensive study on the prediction reliability of graph neural
  networks for virtual screening
A comprehensive study on the prediction reliability of graph neural networks for virtual screening
Soojung Yang
K. Lee
Seongok Ryu
19
7
0
17 Mar 2020
A Unified View of Label Shift Estimation
A Unified View of Label Shift Estimation
Saurabh Garg
Yifan Wu
Sivaraman Balakrishnan
Zachary Chase Lipton
16
139
0
17 Mar 2020
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty
  Calibration in Deep Learning
Mix-n-Match: Ensemble and Compositional Methods for Uncertainty Calibration in Deep Learning
Jize Zhang
B. Kailkhura
T. Y. Han
UQCV
21
220
0
16 Mar 2020
An Empirical Evaluation on Robustness and Uncertainty of Regularization
  Methods
An Empirical Evaluation on Robustness and Uncertainty of Regularization Methods
Sanghyuk Chun
Seong Joon Oh
Sangdoo Yun
Dongyoon Han
Junsuk Choe
Y. Yoo
AAML
OOD
329
53
0
09 Mar 2020
PAC-Bayes meta-learning with implicit task-specific posteriors
PAC-Bayes meta-learning with implicit task-specific posteriors
Cuong C. Nguyen
Thanh-Toan Do
G. Carneiro
BDL
36
7
0
05 Mar 2020
Calibrated Prediction with Covariate Shift via Unsupervised Domain
  Adaptation
Calibrated Prediction with Covariate Shift via Unsupervised Domain Adaptation
Sangdon Park
Osbert Bastani
James Weimer
Insup Lee
23
52
0
29 Feb 2020
Towards Universal Representation Learning for Deep Face Recognition
Towards Universal Representation Learning for Deep Face Recognition
Yichun Shi
Xiang Yu
Kihyuk Sohn
Manmohan Chandraker
Anil K. Jain
CVBM
OOD
17
148
0
26 Feb 2020
Generalized ODIN: Detecting Out-of-distribution Image without Learning
  from Out-of-distribution Data
Generalized ODIN: Detecting Out-of-distribution Image without Learning from Out-of-distribution Data
Yen-Chang Hsu
Yilin Shen
Hongxia Jin
Z. Kira
OODD
24
558
0
26 Feb 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
33
277
0
24 Feb 2020
Real-Time Detectors for Digital and Physical Adversarial Inputs to
  Perception Systems
Real-Time Detectors for Digital and Physical Adversarial Inputs to Perception Systems
Y. Kantaros
Taylor J. Carpenter
Kaustubh Sridhar
Yahan Yang
Insup Lee
James Weimer
AAML
14
12
0
23 Feb 2020
Calibrating Deep Neural Networks using Focal Loss
Calibrating Deep Neural Networks using Focal Loss
Jishnu Mukhoti
Viveka Kulharia
Amartya Sanyal
Stuart Golodetz
Philip H. S. Torr
P. Dokania
UQCV
56
444
0
21 Feb 2020
Greedy Policy Search: A Simple Baseline for Learnable Test-Time
  Augmentation
Greedy Policy Search: A Simple Baseline for Learnable Test-Time Augmentation
Dmitry Molchanov
Alexander Lyzhov
Yuliya Molchanova
Arsenii Ashukha
Dmitry Vetrov
TPM
17
84
0
21 Feb 2020
Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction
Spatiotemporal Relationship Reasoning for Pedestrian Intent Prediction
Bingbin Liu
Ehsan Adeli
Zhangjie Cao
Kuan-Hui Lee
Abhijeet Shenoi
Adrien Gaidon
Juan Carlos Niebles
23
150
0
20 Feb 2020
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
Bayesian Deep Learning and a Probabilistic Perspective of Generalization
A. Wilson
Pavel Izmailov
UQCV
BDL
OOD
24
639
0
20 Feb 2020
Being Bayesian about Categorical Probability
Being Bayesian about Categorical Probability
Taejong Joo
U. Chung
Minji Seo
UQCV
BDL
25
58
0
19 Feb 2020
A Financial Service Chatbot based on Deep Bidirectional Transformers
A Financial Service Chatbot based on Deep Bidirectional Transformers
S. Yu
Yuxin Chen
Hussain Zaidi
17
33
0
17 Feb 2020
BatchEnsemble: An Alternative Approach to Efficient Ensemble and
  Lifelong Learning
BatchEnsemble: An Alternative Approach to Efficient Ensemble and Lifelong Learning
Yeming Wen
Dustin Tran
Jimmy Ba
OOD
FedML
UQCV
27
482
0
17 Feb 2020
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep
  Learning
Pitfalls of In-Domain Uncertainty Estimation and Ensembling in Deep Learning
Arsenii Ashukha
Alexander Lyzhov
Dmitry Molchanov
Dmitry Vetrov
UQCV
FedML
33
314
0
15 Feb 2020
The Conditional Entropy Bottleneck
The Conditional Entropy Bottleneck
Ian S. Fischer
OOD
19
115
0
13 Feb 2020
Adversarial Robustness for Code
Adversarial Robustness for Code
Pavol Bielik
Martin Vechev
AAML
14
89
0
11 Feb 2020
Previous
123...1819202122
Next