ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08566
  4. Cited By
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

26 June 2017
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
ArXivPDFHTML

Papers citing "SchNet: A continuous-filter convolutional neural network for modeling quantum interactions"

50 / 183 papers shown
Title
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
J. Qu
Wenhan Gao
Jiaxing Zhang
Xufeng Liu
Hua Wei
Haibin Ling
Y. Liu
AI4CE
55
0
0
04 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
49
0
0
31 Mar 2025
NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
Yuheng Ding
Yusong Wang
Bo Qiang
Jie Yu
Qi Li
Yiran Zhou
Zhenmin Liu
159
0
0
22 Mar 2025
MatterChat: A Multi-Modal LLM for Material Science
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
Is attention all you need to solve the correlated electron problem?
Is attention all you need to solve the correlated electron problem?
Max Geier
Khachatur Nazaryan
Timothy Zaklama
Liang Fu
43
3
0
07 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights
MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights
Jingjing Hu
D. Guo
Zhan Si
Deguang Liu
Yunfeng Diao
J. Zhang
Jinxing Zhou
Meng Wang
Mamba
98
1
0
21 Dec 2024
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Artem Maevskiy
Alexandra Carvalho
Emil Sataev
Volha Turchyna
Keian Noori
Aleksandr Rodin
A. H. Castro Neto
Andrey E. Ustyuzhanin
37
0
0
11 Nov 2024
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Kentaro Hino
Yuki Kurashige
34
0
0
31 Oct 2024
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
26
1
0
15 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Deep Signature: Characterization of Large-Scale Molecular Dynamics
Deep Signature: Characterization of Large-Scale Molecular Dynamics
Tiexin Qin
Mengxu Zhu
Chunyang Li
Terry Lyons
Hong Yan
Haoliang Li
28
0
0
03 Oct 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of
  Freedom with Multi-Task Learning
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
48
0
0
05 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
72
6
0
28 Aug 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
SE(3)-Hyena Operator for Scalable Equivariant Learning
SE(3)-Hyena Operator for Scalable Equivariant Learning
Artem Moskalev
Mangal Prakash
Rui Liao
Tommaso Mansi
46
2
0
01 Jul 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based
  Diffusion Models
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
40
2
0
04 Jun 2024
E(n) Equivariant Topological Neural Networks
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
52
5
0
24 May 2024
Deep Learning Method for Computing Committor Functions with Adaptive
  Sampling
Deep Learning Method for Computing Committor Functions with Adaptive Sampling
Bo Lin
Weiqing Ren
18
3
0
09 Apr 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
29
3
0
25 Mar 2024
Unified Static and Dynamic Network: Efficient Temporal Filtering for Video Grounding
Unified Static and Dynamic Network: Efficient Temporal Filtering for Video Grounding
Jingjing Hu
Dan Guo
Kun Li
Zhan Si
Xun Yang
Xiaojun Chang
Meng Wang
59
3
0
21 Mar 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular
  Graph Learning with Triplet Graph Transformers
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
28
5
0
07 Feb 2024
Molecular Property Prediction Based on Graph Structure Learning
Molecular Property Prediction Based on Graph Structure Learning
Bangyi Zhao
Weixia Xu
Jihong Guan
Shuigeng Zhou
19
7
0
28 Dec 2023
Molecular Hypergraph Neural Networks
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
41
10
0
20 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case
  Study of Liquid Water
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Multiscale Hodge Scattering Networks for Data Analysis
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
32
1
0
17 Nov 2023
STRIDE: Structure-guided Generation for Inverse Design of Molecules
STRIDE: Structure-guided Generation for Inverse Design of Molecules
Shehtab Zaman
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
21
1
0
06 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs
  through Efficient Communication Channel
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
37
3
0
02 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for
  Atomic Property Prediction
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
LLM-Prop: Predicting Physical And Electronic Properties Of Crystalline
  Solids From Their Text Descriptions
LLM-Prop: Predicting Physical And Electronic Properties Of Crystalline Solids From Their Text Descriptions
Andre Niyongabo Rubungo
Craig Arnold
Barry P. Rand
Adji Bousso Dieng
AI4CE
41
28
0
21 Oct 2023
Scalable Diffusion for Materials Generation
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
29
39
0
18 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed
  energy predictions
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
DrugCLIP: Contrastive Protein-Molecule Representation Learning for
  Virtual Screening
DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
Bowen Gao
Bo Qiang
Haichuan Tan
Minsi Ren
Yinjun Jia
Minsi Lu
Jingjing Liu
Wei-Ying Ma
Yanyan Lan
29
9
0
10 Oct 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property
  Prediction with 3D Information
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
23
7
0
28 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
32
16
0
15 Sep 2023
Beyond MD17: the reactive xxMD dataset
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
Learned Gridification for Efficient Point Cloud Processing
Learned Gridification for Efficient Point Cloud Processing
P. A. V. D. Linden
David W. Romero
Erik J. Bekkers
3DPC
20
2
0
22 Jul 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural
  Wavefunctions
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
33
5
0
15 Jul 2023
Scaling Spherical CNNs
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
14
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction
  Learning
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
Towards Semi-supervised Universal Graph Classification
Towards Semi-supervised Universal Graph Classification
Xiao Luo
Yusheng Zhao
Yifang Qin
Wei Ju
Ming Zhang
20
30
0
31 May 2023
Investigating how ReLU-networks encode symmetries
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
24
6
0
26 May 2023
A Score-Based Model for Learning Neural Wavefunctions
A Score-Based Model for Learning Neural Wavefunctions
Xuan Zhang
Shenglong Xu
Shuiwang Ji
DiffM
25
1
0
25 May 2023
HybridNet: Dual-Branch Fusion of Geometrical and Topological Views for
  VLSI Congestion Prediction
HybridNet: Dual-Branch Fusion of Geometrical and Topological Views for VLSI Congestion Prediction
Yuxiang Zhao
Zhuomin Chai
Yibo Lin
Runsheng Wang
Ru Huang
13
4
0
07 May 2023
3D Molecular Geometry Analysis with 2D Graphs
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
19
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
29
54
0
28 Apr 2023
An Equivariant Generative Framework for Molecular Graph-Structure
  Co-Design
An Equivariant Generative Framework for Molecular Graph-Structure Co-Design
Zaixin Zhang
Qi Liu
Cheekong Lee
Chang-Yu Hsieh
Enhong Chen
15
18
0
12 Apr 2023
1234
Next