ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1706.08566
  4. Cited By
SchNet: A continuous-filter convolutional neural network for modeling
  quantum interactions

SchNet: A continuous-filter convolutional neural network for modeling quantum interactions

26 June 2017
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
ArXivPDFHTML

Papers citing "SchNet: A continuous-filter convolutional neural network for modeling quantum interactions"

50 / 187 papers shown
Title
SELFormer: Molecular Representation Learning via SELFIES Language Models
SELFormer: Molecular Representation Learning via SELFIES Language Models
Atakan Yüksel
Erva Ulusoy
Atabey Ünlü
Tunca Dogan
25
55
0
10 Apr 2023
Learning Energy-Based Representations of Quantum Many-Body States
Learning Energy-Based Representations of Quantum Many-Body States
Abhijith Jayakumar
Marc Vuffray
A. Lokhov
AI4CE
27
3
0
08 Apr 2023
On the Relationships between Graph Neural Networks for the Simulation of
  Physical Systems and Classical Numerical Methods
On the Relationships between Graph Neural Networks for the Simulation of Physical Systems and Classical Numerical Methods
Artur P. Toshev
Ludger Paehler
A. Panizza
Nikolaus A. Adams
AI4CE
PINN
11
5
0
31 Mar 2023
Connectivity Optimized Nested Graph Networks for Crystal Structures
Connectivity Optimized Nested Graph Networks for Crystal Structures
R. Ruff
Patrick Reiser
Jan Stuhmer
Pascal Friederich
GNN
28
11
0
27 Feb 2023
GraphVF: Controllable Protein-Specific 3D Molecule Generation with
  Variational Flow
GraphVF: Controllable Protein-Specific 3D Molecule Generation with Variational Flow
Fangce Sun
Zhihao Zhan
Hongyu Guo
Ming Zhang
Jian Tang
26
6
0
23 Feb 2023
Complete Neural Networks for Complete Euclidean Graphs
Complete Neural Networks for Complete Euclidean Graphs
Snir Hordan
Tal Amir
S. Gortler
Nadav Dym
3DPC
29
5
0
31 Jan 2023
Graph Scattering beyond Wavelet Shackles
Graph Scattering beyond Wavelet Shackles
Christian Koke
Gitta Kutyniok
18
4
0
26 Jan 2023
Scalable Bayesian Uncertainty Quantification for Neural Network
  Potentials: Promise and Pitfalls
Scalable Bayesian Uncertainty Quantification for Neural Network Potentials: Promise and Pitfalls
Stephan Thaler
Gregor Doehner
J. Zavadlav
35
21
0
15 Dec 2022
Implicit Convolutional Kernels for Steerable CNNs
Implicit Convolutional Kernels for Steerable CNNs
Maksim Zhdanov
Nico Hoffmann
Gabriele Cesa
29
5
0
12 Dec 2022
Integration of Pre-trained Protein Language Models into Geometric Deep
  Learning Networks
Integration of Pre-trained Protein Language Models into Geometric Deep Learning Networks
Fang Wu
Yujun Tao
Dragomir R. Radev
Jinbo Xu
Stan Z. Li
AI4CE
30
32
0
07 Dec 2022
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using
  Generalizable Machine Learning Potentials
AdsorbML: A Leap in Efficiency for Adsorption Energy Calculations using Generalizable Machine Learning Potentials
Janice Lan
Aini Palizhati
Muhammed Shuaibi
Brandon M. Wood
Brook Wander
Abhishek Das
M. Uyttendaele
C. L. Zitnick
Zachary W. Ulissi
29
44
0
29 Nov 2022
Synthetic data enable experiments in atomistic machine learning
Synthetic data enable experiments in atomistic machine learning
John L A Gardner
Z. Beaulieu
Volker L. Deringer
31
6
0
29 Nov 2022
Supervised Pretraining for Molecular Force Fields and Properties
  Prediction
Supervised Pretraining for Molecular Force Fields and Properties Prediction
Xiang Gao
Weihao Gao
Wen Xiao
Zhirui Wang
Chong Wang
Liang Xiang
AI4CE
20
8
0
23 Nov 2022
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Fast Uncertainty Estimates in Deep Learning Interatomic Potentials
Albert J. W. Zhu
Simon L. Batzner
Albert Musaelian
Boris Kozinsky
22
45
0
17 Nov 2022
ParticleGrid: Enabling Deep Learning using 3D Representation of
  Materials
ParticleGrid: Enabling Deep Learning using 3D Representation of Materials
Shehtab Zaman
E. Ferguson
Cécile Pereira
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
DiffM
AI4CE
21
2
0
15 Nov 2022
Equivariant Networks for Crystal Structures
Equivariant Networks for Crystal Structures
Sekouba Kaba
Siamak Ravanbakhsh
AI4CE
48
23
0
15 Nov 2022
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph
  Neural Networks
Deep Surrogate Docking: Accelerating Automated Drug Discovery with Graph Neural Networks
Ryien Hosseini
F. Simini
Austin R. Clyde
A. Ramanathan
21
5
0
04 Nov 2022
Materials Property Prediction with Uncertainty Quantification: A
  Benchmark Study
Materials Property Prediction with Uncertainty Quantification: A Benchmark Study
Daniel Varivoda
Rongzhi Dong
Sadman Sadeed Omee
Jianjun Hu
AI4CE
28
20
0
04 Nov 2022
A 3D-Shape Similarity-based Contrastive Approach to Molecular
  Representation Learning
A 3D-Shape Similarity-based Contrastive Approach to Molecular Representation Learning
Austin O. Atsango
N. Diamant
Ziqing Lu
Tommaso Biancalani
Gabriele Scalia
Kangway V Chuang
24
2
0
03 Nov 2022
A Continuous Convolutional Trainable Filter for Modelling Unstructured
  Data
A Continuous Convolutional Trainable Filter for Modelling Unstructured Data
Dario Coscia
L. Meneghetti
N. Demo
G. Stabile
G. Rozza
16
8
0
24 Oct 2022
Theoretical Guarantees for Permutation-Equivariant Quantum Neural
  Networks
Theoretical Guarantees for Permutation-Equivariant Quantum Neural Networks
Louis Schatzki
Martín Larocca
Quynh T. Nguyen
F. Sauvage
M. Cerezo
34
84
0
18 Oct 2022
PEMP: Leveraging Physics Properties to Enhance Molecular Property
  Prediction
PEMP: Leveraging Physics Properties to Enhance Molecular Property Prediction
Yuancheng Sun
Yimeng Chen
Weizhi Ma
Wenhao Huang
Kang Liu
Zhiming Ma
Wei-Ying Ma
Yanyan Lan
20
7
0
18 Oct 2022
Injecting Domain Knowledge from Empirical Interatomic Potentials to
  Neural Networks for Predicting Material Properties
Injecting Domain Knowledge from Empirical Interatomic Potentials to Neural Networks for Predicting Material Properties
Zeren Shui
Daniel S. Karls
Mingjian Wen
Ilia Nikiforov
E. Tadmor
George Karypis
40
7
0
14 Oct 2022
S4ND: Modeling Images and Videos as Multidimensional Signals Using State
  Spaces
S4ND: Modeling Images and Videos as Multidimensional Signals Using State Spaces
Eric N. D. Nguyen
Karan Goel
Albert Gu
Gordon W. Downs
Preey Shah
Tri Dao
S. Baccus
Christopher Ré
VLM
22
38
0
12 Oct 2022
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Hyperactive Learning (HAL) for Data-Driven Interatomic Potentials
Cas van der Oord
Matthias Sachs
D. P. Kovács
Christoph Ortner
Gábor Csányi
41
64
0
09 Oct 2022
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
DiffDock: Diffusion Steps, Twists, and Turns for Molecular Docking
Gabriele Corso
Hannes Stärk
Bowen Jing
Regina Barzilay
Tommi Jaakkola
DiffM
139
410
0
04 Oct 2022
Periodic Graph Transformers for Crystal Material Property Prediction
Periodic Graph Transformers for Crystal Material Property Prediction
Keqiang Yan
Yi Liu
Yu-Ching Lin
Shuiwang Ji
AI4TS
88
84
0
23 Sep 2022
Exact conservation laws for neural network integrators of dynamical
  systems
Exact conservation laws for neural network integrators of dynamical systems
E. Müller
PINN
41
12
0
23 Sep 2022
Interpreting the Mechanism of Synergism for Drug Combinations Using
  Attention-Based Hierarchical Graph Pooling
Interpreting the Mechanism of Synergism for Drug Combinations Using Attention-Based Hierarchical Graph Pooling
Zehao Dong
Heming Zhang
Yixin Chen
Philip R. O. Payne
Fuhai Li
GNN
43
16
0
19 Sep 2022
Unified 2D and 3D Pre-Training of Molecular Representations
Unified 2D and 3D Pre-Training of Molecular Representations
Jinhua Zhu
Yingce Xia
Lijun Wu
Shufang Xie
Tao Qin
Wen-gang Zhou
Houqiang Li
Tie-Yan Liu
AI4CE
54
67
0
14 Jul 2022
Cluster Generation via Deep Energy-Based Model
Cluster Generation via Deep Energy-Based Model
A. Y. Artsukevich
S. Lepeshkin
27
0
0
17 Jun 2022
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide
  Electrocatalysts
The Open Catalyst 2022 (OC22) Dataset and Challenges for Oxide Electrocatalysts
Richard Tran
Janice Lan
Muhammed Shuaibi
Brandon M. Wood
Siddharth Goyal
...
Jehad Abed
Oleksandr Voznyy
Edward H. Sargent
Zachary W. Ulissi
C. L. Zitnick
28
172
0
17 Jun 2022
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular
  Graphs
ComENet: Towards Complete and Efficient Message Passing for 3D Molecular Graphs
Limei Wang
Yi Liu
Yu-Ching Lin
Hao Liu
Shuiwang Ji
GNN
38
89
0
17 Jun 2022
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast
  and Accurate Force Fields
MACE: Higher Order Equivariant Message Passing Neural Networks for Fast and Accurate Force Fields
Ilyes Batatia
D. P. Kovács
G. Simm
Christoph Ortner
Gábor Csányi
41
441
0
15 Jun 2022
Towards a General Purpose CNN for Long Range Dependencies in $N$D
Towards a General Purpose CNN for Long Range Dependencies in NNND
David W. Romero
David M. Knigge
Albert Gu
Erik J. Bekkers
E. Gavves
Jakub M. Tomczak
Mark Hoogendoorn
16
19
0
07 Jun 2022
An Empirical Study of Retrieval-enhanced Graph Neural Networks
An Empirical Study of Retrieval-enhanced Graph Neural Networks
Dingmin Wang
Shengchao Liu
Hanchen Wang
Bernardo Cuenca Grau
Linfeng Song
Jian Tang
Song Le
Qi Liu
13
0
0
01 Jun 2022
Torsional Diffusion for Molecular Conformer Generation
Torsional Diffusion for Molecular Conformer Generation
Bowen Jing
Gabriele Corso
Jeffrey Chang
Regina Barzilay
Tommi Jaakkola
DiffM
BDL
27
259
0
01 Jun 2022
Tyger: Task-Type-Generic Active Learning for Molecular Property
  Prediction
Tyger: Task-Type-Generic Active Learning for Molecular Property Prediction
Kuangqi Zhou
Kaixin Wang
Jiashi Feng
Jian Tang
Tingyang Xu
Xinchao Wang
26
1
0
23 May 2022
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular
  Linker Design
3DLinker: An E(3) Equivariant Variational Autoencoder for Molecular Linker Design
Yinan Huang
Xing Peng
Jianzhu Ma
Muhan Zhang
BDL
30
47
0
15 May 2022
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Pocket2Mol: Efficient Molecular Sampling Based on 3D Protein Pockets
Xingang Peng
Shitong Luo
Jiaqi Guan
Qi Xie
Jian-wei Peng
Jianzhu Ma
27
176
0
15 May 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
GemNet-OC: Developing Graph Neural Networks for Large and Diverse
  Molecular Simulation Datasets
GemNet-OC: Developing Graph Neural Networks for Large and Diverse Molecular Simulation Datasets
Johannes Gasteiger
Muhammed Shuaibi
Anuroop Sriram
Stephan Günnemann
Zachary W. Ulissi
C. L. Zitnick
Abhishek Das
AI4TS
MLAU
33
66
0
06 Apr 2022
When Physics Meets Machine Learning: A Survey of Physics-Informed
  Machine Learning
When Physics Meets Machine Learning: A Survey of Physics-Informed Machine Learning
Chuizheng Meng
Sungyong Seo
Defu Cao
Sam Griesemer
Yan Liu
PINN
AI4CE
39
55
0
31 Mar 2022
Towards Training Billion Parameter Graph Neural Networks for Atomic
  Simulations
Towards Training Billion Parameter Graph Neural Networks for Atomic Simulations
Anuroop Sriram
Abhishek Das
Brandon M. Wood
Siddharth Goyal
C. L. Zitnick
AI4CE
30
27
0
18 Mar 2022
Non-equilibrium molecular geometries in graph neural networks
Non-equilibrium molecular geometries in graph neural networks
Ali Raza
E. Henle
Xiaoli Z. Fern
AI4CE
21
0
0
07 Mar 2022
GeoDiff: a Geometric Diffusion Model for Molecular Conformation
  Generation
GeoDiff: a Geometric Diffusion Model for Molecular Conformation Generation
Minkai Xu
Lantao Yu
Yang Song
Chence Shi
Stefano Ermon
Jian Tang
BDL
DiffM
24
496
0
06 Mar 2022
Equivariant Graph Attention Networks for Molecular Property Prediction
Equivariant Graph Attention Networks for Molecular Property Prediction
Tuan Le
Frank Noé
Djork-Arné Clevert
16
21
0
20 Feb 2022
A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications
A Survey of Pretraining on Graphs: Taxonomy, Methods, and Applications
Jun-Xiong Xia
Yanqiao Zhu
Yuanqi Du
Stan Z. Li
VLM
30
41
0
16 Feb 2022
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular
  Potentials
TorchMD-NET: Equivariant Transformers for Neural Network based Molecular Potentials
Philipp Thölke
Gianni de Fabritiis
AI4CE
34
185
0
05 Feb 2022
GraphVAMPNet, using graph neural networks and variational approach to
  markov processes for dynamical modeling of biomolecules
GraphVAMPNet, using graph neural networks and variational approach to markov processes for dynamical modeling of biomolecules
Mahdi Ghorbani
Samarjeet Prasad
Jeffery B. Klauda
B. Brooks
GNN
24
30
0
12 Jan 2022
Previous
1234
Next