Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08566
Cited By
SchNet: A continuous-filter convolutional neural network for modeling quantum interactions
26 June 2017
Kristof T. Schütt
Pieter-Jan Kindermans
Huziel Enoc Sauceda Felix
Stefan Chmiela
A. Tkatchenko
K. Müller
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SchNet: A continuous-filter convolutional neural network for modeling quantum interactions"
50 / 189 papers shown
Title
RISE: Radius of Influence based Subgraph Extraction for 3D Molecular Graph Explanation
J. Qu
Wenhan Gao
Jiaxing Zhang
Xufeng Liu
Hua Wei
Haibin Ling
Y. Liu
AI4CE
55
0
0
04 May 2025
Towards Faster and More Compact Foundation Models for Molecular Property Prediction
Yasir Ghunaim
Andrés Villa
Gergo Ignacz
Gyorgy Szekely
Motasem Alfarra
Bernard Ghanem
AI4CE
90
0
0
28 Apr 2025
Quantifying Robustness: A Benchmarking Framework for Deep Learning Forecasting in Cyber-Physical Systems
Alexander Windmann
Henrik S. Steude
Daniel Boschmann
Oliver Niggemann
OOD
AI4TS
33
0
0
04 Apr 2025
Force-Free Molecular Dynamics Through Autoregressive Equivariant Networks
Fabian L. Thiemann
Thiago Reschützegger
Massimiliano Esposito
Tseden Taddese
Juan D. Olarte-Plata
Fausto Martelli
AI4CE
49
0
0
31 Mar 2025
NaFM: Pre-training a Foundation Model for Small-Molecule Natural Products
Yuheng Ding
Yusong Wang
Bo Qiang
Jie Yu
Qi Li
Yiran Zhou
Zhenmin Liu
Zhenmin Liu
162
0
0
22 Mar 2025
MatterChat: A Multi-Modal LLM for Material Science
Yingheng Tang
Wenbin Xu
Jie Cao
Jianzhu Ma
Weilu Gao
Steve Farrell
Benjamin Erichson
Michael W. Mahoney
Andy Nonaka
113
3
0
18 Feb 2025
Is attention all you need to solve the correlated electron problem?
Max Geier
Khachatur Nazaryan
Timothy Zaklama
Liang Fu
43
3
0
07 Feb 2025
FastCHGNet: Training one Universal Interatomic Potential to 1.5 Hours with 32 GPUs
Yuanchang Zhou
Siyu Hu
Chen Wang
Lin-Wang Wang
Guangming Tan
Weile Jia
AI4CE
GNN
50
0
0
30 Dec 2024
MOL-Mamba: Enhancing Molecular Representation with Structural & Electronic Insights
Jingjing Hu
D. Guo
Zhan Si
Deguang Liu
Yunfeng Diao
J. Zhang
Jinxing Zhou
Meng Wang
Mamba
104
1
0
21 Dec 2024
Predicting ionic conductivity in solids from the machine-learned potential energy landscape
Artem Maevskiy
Alexandra Carvalho
Emil Sataev
Volha Turchyna
Keian Noori
Aleksandr Rodin
A. H. Castro Neto
Andrey E. Ustyuzhanin
37
0
0
11 Nov 2024
Neural Network Matrix Product Operator: A Multi-Dimensionally Integrable Machine Learning Potential
Kentaro Hino
Yuki Kurashige
34
0
0
31 Oct 2024
Beyond Sequence: Impact of Geometric Context for RNA Property Prediction
Junjie Xu
Artem Moskalev
Tommaso Mansi
Mangal Prakash
Rui Liao
AI4CE
26
1
0
15 Oct 2024
Learning Equivariant Non-Local Electron Density Functionals
Nicholas Gao
Eike Eberhard
Stephan Günnemann
28
1
0
10 Oct 2024
Deep Signature: Characterization of Large-Scale Molecular Dynamics
Tiexin Qin
Mengxu Zhu
Chunyang Li
Terry Lyons
Hong Yan
Haoliang Li
28
0
0
03 Oct 2024
SpinMultiNet: Neural Network Potential Incorporating Spin Degrees of Freedom with Multi-Task Learning
Koki Ueno
Satoru Ohuchi
Kazuhide Ichikawa
Kei Amii
Kensuke Wakasugi
51
0
0
05 Sep 2024
chemtrain: Learning Deep Potential Models via Automatic Differentiation and Statistical Physics
Paul Fuchs
Stephan Thaler
Sebastien Röcken
J. Zavadlav
DiffM
72
6
0
28 Aug 2024
Physics-Informed Weakly Supervised Learning for Interatomic Potentials
Makoto Takamoto
Viktor Zaverkin
Mathias Niepert
AI4CE
60
0
0
23 Jul 2024
SE(3)-Hyena Operator for Scalable Equivariant Learning
Artem Moskalev
Mangal Prakash
Rui Liao
Tommaso Mansi
46
2
0
01 Jul 2024
Molecule Graph Networks with Many-body Equivariant Interactions
Zetian Mao
Jiawen Li
Chen Liang
Diptesh Das
Masato Sumita
Koji Tsuda
Kelin Xia
Koji Tsuda
35
1
0
19 Jun 2024
Neural Thermodynamic Integration: Free Energies from Energy-based Diffusion Models
Bálint Máté
François Fleuret
Tristan Bereau
DiffM
43
2
0
04 Jun 2024
E(n) Equivariant Topological Neural Networks
Claudio Battiloro
Ege Karaismailoglu
Mauricio Tec
George Dasoulas
Michelle Audirac
Francesca Dominici
52
5
0
24 May 2024
Deep Learning Method for Computing Committor Functions with Adaptive Sampling
Bo Lin
Weiqing Ren
23
3
0
09 Apr 2024
Grappa -- A Machine Learned Molecular Mechanics Force Field
Leif Seute
Eric Hartmann
Jan Stühmer
Frauke Gräter
29
3
0
25 Mar 2024
Unified Static and Dynamic Network: Efficient Temporal Filtering for Video Grounding
Jingjing Hu
Dan Guo
Kun Li
Zhan Si
Xun Yang
Xiaojun Chang
Meng Wang
59
3
0
21 Mar 2024
Triplet Interaction Improves Graph Transformers: Accurate Molecular Graph Learning with Triplet Graph Transformers
Md Shamim Hussain
Mohammed J. Zaki
D. Subramanian
ViT
31
5
0
07 Feb 2024
Molecular Property Prediction Based on Graph Structure Learning
Bangyi Zhao
Weixia Xu
Jihong Guan
Shuigeng Zhou
19
7
0
28 Dec 2023
Molecular Hypergraph Neural Networks
Junwu Chen
Philippe Schwaller
GNN
44
10
0
20 Dec 2023
Predicting Properties of Periodic Systems from Cluster Data: A Case Study of Liquid Water
Viktor Zaverkin
David Holzmüller
Robin Schuldt
Johannes Kastner
28
15
0
03 Dec 2023
Multiscale Hodge Scattering Networks for Data Analysis
Naoki Saito
Stefan C. Schonsheck
Eugene Shvarts
34
1
0
17 Nov 2023
STRIDE: Structure-guided Generation for Inverse Design of Molecules
Shehtab Zaman
D. Akhiyarov
Mauricio Araya-Polo
Kenneth Chiu
21
1
0
06 Nov 2023
Neural Atoms: Propagating Long-range Interaction in Molecular Graphs through Efficient Communication Channel
Xuan Li
Zhanke Zhou
Jiangchao Yao
Yu Rong
Lu Zhang
Bo Han
37
3
0
02 Nov 2023
From Molecules to Materials: Pre-training Large Generalizable Models for Atomic Property Prediction
Nima Shoghi
Adeesh Kolluru
John R. Kitchin
Zachary W. Ulissi
C. L. Zitnick
Brandon M. Wood
AI4CE
24
32
0
25 Oct 2023
LLM-Prop: Predicting Physical And Electronic Properties Of Crystalline Solids From Their Text Descriptions
Andre Niyongabo Rubungo
Craig Arnold
Barry P. Rand
Adji Bousso Dieng
AI4CE
41
28
0
21 Oct 2023
Scalable Diffusion for Materials Generation
Mengjiao Yang
KwangHwan Cho
Amil Merchant
Pieter Abbeel
Dale Schuurmans
Igor Mordatch
E. D. Cubuk
29
39
0
18 Oct 2023
On the importance of catalyst-adsorbate 3D interactions for relaxed energy predictions
Alvaro Carbonero
Alexandre Duval
Victor Schmidt
Santiago Miret
Alex Hernandez-Garcia
Yoshua Bengio
David Rolnick
32
0
0
10 Oct 2023
DrugCLIP: Contrastive Protein-Molecule Representation Learning for Virtual Screening
Bowen Gao
Bo Qiang
Haichuan Tan
Minsi Ren
Yinjun Jia
Minsi Lu
Jingjing Liu
Wei-Ying Ma
Yanyan Lan
31
9
0
10 Oct 2023
3D-Mol: A Novel Contrastive Learning Framework for Molecular Property Prediction with 3D Information
Taojie Kuang
Yiming Ren
Zhixiang Ren
25
7
0
28 Sep 2023
Uncovering Neural Scaling Laws in Molecular Representation Learning
Dingshuo Chen
Yanqiao Zhu
Jieyu Zhang
Yuanqi Du
Zhixun Li
Qiang Liu
Shu Wu
Liang Wang
32
16
0
15 Sep 2023
Beyond MD17: the reactive xxMD dataset
Zihan Pengmei
Junyu Liu
Yinan Shu
21
6
0
22 Aug 2023
Learned Gridification for Efficient Point Cloud Processing
P. A. V. D. Linden
David W. Romero
Erik J. Bekkers
3DPC
20
2
0
22 Jul 2023
Variational Monte Carlo on a Budget -- Fine-tuning pre-trained Neural Wavefunctions
Michael Scherbela
Leon Gerard
Philipp Grohs
35
5
0
15 Jul 2023
Scaling Spherical CNNs
Carlos Esteves
Jean-Jacques E. Slotine
A. Makadia
GNN
LRM
19
14
0
08 Jun 2023
Generalist Equivariant Transformer Towards 3D Molecular Interaction Learning
Xiangzhe Kong
Wen-bing Huang
Yang Liu
22
13
0
02 Jun 2023
Towards Semi-supervised Universal Graph Classification
Xiao Luo
Yusheng Zhao
Yifang Qin
Wei Ju
Ming Zhang
22
30
0
31 May 2023
Investigating how ReLU-networks encode symmetries
Georg Bökman
Fredrik Kahl
24
6
0
26 May 2023
A Score-Based Model for Learning Neural Wavefunctions
Xuan Zhang
Shenglong Xu
Shuiwang Ji
DiffM
25
1
0
25 May 2023
HybridNet: Dual-Branch Fusion of Geometrical and Topological Views for VLSI Congestion Prediction
Yuxiang Zhao
Zhuomin Chai
Yibo Lin
Runsheng Wang
Ru Huang
13
4
0
07 May 2023
3D Molecular Geometry Analysis with 2D Graphs
Zhao Xu
Yaochen Xie
Youzhi Luo
Xuan Zhang
Xinyi Xu
Meng Liu
Kaleb Dickerson
Cheng Deng
Maho Nakata
Shuiwang Ji
19
1
0
01 May 2023
FAENet: Frame Averaging Equivariant GNN for Materials Modeling
Alexandre Duval
Victor Schmidt
A. Garcia
Santiago Miret
Fragkiskos D. Malliaros
Yoshua Bengio
David Rolnick
31
54
0
28 Apr 2023
An Equivariant Generative Framework for Molecular Graph-Structure Co-Design
Zaixin Zhang
Qi Liu
Cheekong Lee
Chang-Yu Hsieh
Enhong Chen
19
18
0
12 Apr 2023
1
2
3
4
Next