Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1706.08606
Cited By
v1
v2 (latest)
Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study
26 June 2017
Samuel Ritter
David Barrett
Adam Santoro
M. Botvinick
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Cognitive Psychology for Deep Neural Networks: A Shape Bias Case Study"
50 / 58 papers shown
Title
CogLM: Tracking Cognitive Development of Large Language Models
Xinglin Wang
Peiwen Yuan
Shaoxiong Feng
Yiwei Li
Boyuan Pan
Heda Wang
Yao Hu
Kan Li
ELM
160
1
0
17 Aug 2024
Towards a Psychology of Machines: Large Language Models Predict Human Memory
Markus Huff
Elanur Ulakçi
77
4
0
08 Mar 2024
A novel feature-scrambling approach reveals the capacity of convolutional neural networks to learn spatial relations
A. Farahat
Felix Effenberger
M. Vinck
91
5
0
12 Dec 2022
Mechanistic Mode Connectivity
Ekdeep Singh Lubana
Eric J. Bigelow
Robert P. Dick
David M. Krueger
Hidenori Tanaka
122
49
0
15 Nov 2022
The Role of Explanatory Value in Natural Language Processing
Kees van Deemter
XAI
32
0
0
13 Sep 2022
Gaussian Process Surrogate Models for Neural Networks
Michael Y. Li
Erin Grant
Thomas Griffiths
BDL
SyDa
109
8
0
11 Aug 2022
Abutting Grating Illusion: Cognitive Challenge to Neural Network Models
Jinyu Fan
Yi Zeng
AAML
61
1
0
08 Aug 2022
Language models show human-like content effects on reasoning tasks
Ishita Dasgupta
Andrew Kyle Lampinen
Stephanie C. Y. Chan
Hannah R. Sheahan
Antonia Creswell
D. Kumaran
James L. McClelland
Felix Hill
ReLM
LRM
136
188
0
14 Jul 2022
Using cognitive psychology to understand GPT-3
Marcel Binz
Eric Schulz
ELM
LLMAG
351
492
0
21 Jun 2022
InBiaseD: Inductive Bias Distillation to Improve Generalization and Robustness through Shape-awareness
Shruthi Gowda
Bahram Zonooz
Elahe Arani
73
5
0
12 Jun 2022
POODLE: Improving Few-shot Learning via Penalizing Out-of-Distribution Samples
Duong H. Le
Khoi Duc Minh Nguyen
Khoi Nguyen
Quoc-Huy Tran
Rang Nguyen
Binh-Son Hua
OODD
95
40
0
08 Jun 2022
Disentangling Abstraction from Statistical Pattern Matching in Human and Machine Learning
Sreejan Kumar
Ishita Dasgupta
Nathaniel D. Daw
Jonathan Cohen
Thomas Griffiths
101
10
0
04 Apr 2022
A Developmentally-Inspired Examination of Shape versus Texture Bias in Machines
Alexa R. Tartaglini
Wai Keen Vong
Brenden M. Lake
64
14
0
16 Feb 2022
Repaint: Improving the Generalization of Down-Stream Visual Tasks by Generating Multiple Instances of Training Examples
Amin Banitalebi-Dehkordi
Yong Zhang
72
7
0
20 Oct 2021
Predicting decision-making in the future: Human versus Machine
H. Ryu
Uijong Ju
C. Wallraven
3DH
65
0
0
09 Oct 2021
Distinguishing rule- and exemplar-based generalization in learning systems
Ishita Dasgupta
Erin Grant
Thomas Griffiths
88
16
0
08 Oct 2021
The Emergence of the Shape Bias Results from Communicative Efficiency
Eva Portelance
Michael C. Frank
Dan Jurafsky
Alessandro Sordoni
Romain Laroche
147
19
0
13 Sep 2021
Shape-Biased Domain Generalization via Shock Graph Embeddings
M. Narayanan
Vickram Rajendran
Benjamin Kimia
75
14
0
13 Sep 2021
IFBiD: Inference-Free Bias Detection
Ignacio Serna
Daniel DeAlcala
Aythami Morales
Julian Fierrez
J. Ortega-Garcia
CVBM
109
11
0
09 Sep 2021
Deep Reinforcement Learning at the Edge of the Statistical Precipice
Rishabh Agarwal
Max Schwarzer
Pablo Samuel Castro
Aaron Courville
Marc G. Bellemare
OffRL
196
680
0
30 Aug 2021
Exploring Corruption Robustness: Inductive Biases in Vision Transformers and MLP-Mixers
Katelyn Morrison
B. Gilby
Colton Lipchak
Adam Mattioli
Adriana Kovashka
ViT
80
17
0
24 Jun 2021
Visual Search Asymmetry: Deep Nets and Humans Share Similar Inherent Biases
Shashi Kant Gupta
Mengmi Zhang
Chia-Chien Wu
J. Wolfe
Gabriel Kreiman
ObjD
69
20
0
05 Jun 2021
Can Subnetwork Structure be the Key to Out-of-Distribution Generalization?
Dinghuai Zhang
Kartik Ahuja
Yilun Xu
Yisen Wang
Aaron Courville
OOD
99
96
0
05 Jun 2021
A Procedural World Generation Framework for Systematic Evaluation of Continual Learning
Timm Hess
Martin Mundt
Iuliia Pliushch
Visvanathan Ramesh
75
7
0
04 Jun 2021
This Looks Like That, Because ... Explaining Prototypes for Interpretable Image Recognition
Meike Nauta
Annemarie Jutte
Jesper C. Provoost
C. Seifert
FAtt
111
65
0
05 Nov 2020
Informative Dropout for Robust Representation Learning: A Shape-bias Perspective
Baifeng Shi
Dinghuai Zhang
Qi Dai
Zhanxing Zhu
Yadong Mu
Jingdong Wang
OOD
72
112
0
10 Aug 2020
What they do when in doubt: a study of inductive biases in seq2seq learners
Eugene Kharitonov
Rahma Chaabouni
79
27
0
26 Jun 2020
Teaching CNNs to mimic Human Visual Cognitive Process & regularise Texture-Shape bias
Satyam Mohla
Anshul Nasery
Biplab Banerjee
41
3
0
25 Jun 2020
A neural network walks into a lab: towards using deep nets as models for human behavior
Wei-Ying Ma
B. Peters
HAI
AI4CE
94
55
0
02 May 2020
Five Points to Check when Comparing Visual Perception in Humans and Machines
Christina M. Funke
Judy Borowski
Karolina Stosio
Wieland Brendel
Thomas S. A. Wallis
Matthias Bethge
73
33
0
20 Apr 2020
Can you hear me
now
\textit{now}
now
? Sensitive comparisons of human and machine perception
Michael A. Lepori
C. Firestone
AAML
69
9
0
27 Mar 2020
Visual Privacy Protection via Mapping Distortion
Yiming Li
Peidong Liu
Yong Jiang
Shutao Xia
120
11
0
05 Nov 2019
Increasing Shape Bias in ImageNet-Trained Networks Using Transfer Learning and Domain-Adversarial Methods
Françis Brochu
GAN
47
11
0
30 Jul 2019
Mutual exclusivity as a challenge for deep neural networks
Kanishk Gandhi
Brenden M. Lake
91
14
0
24 Jun 2019
REPAIR: Removing Representation Bias by Dataset Resampling
Yi Li
Nuno Vasconcelos
FaML
86
287
0
16 Apr 2019
An Analysis of Pre-Training on Object Detection
Hengduo Li
Bharat Singh
Mahyar Najibi
Zuxuan Wu
L. Davis
ObjD
60
39
0
11 Apr 2019
Neural Networks Trained on Natural Scenes Exhibit Gestalt Closure
Been Kim
Emily Reif
Martin Wattenberg
Samy Bengio
Michael C. Mozer
87
31
0
04 Mar 2019
The meaning of "most" for visual question answering models
A. Kuhnle
Ann A. Copestake
38
4
0
31 Dec 2018
Learning Not to Learn: Training Deep Neural Networks with Biased Data
Byungju Kim
Hyunwoo Kim
Kyungsu Kim
Sungjin Kim
Junmo Kim
OOD
74
411
0
26 Dec 2018
ImageNet-trained CNNs are biased towards texture; increasing shape bias improves accuracy and robustness
Robert Geirhos
Patricia Rubisch
Claudio Michaelis
Matthias Bethge
Felix Wichmann
Wieland Brendel
235
2,682
0
29 Nov 2018
Shape and Margin-Aware Lung Nodule Classification in Low-dose CT Images via Soft Activation Mapping
Yiming Lei
Yukun Tian
Hongming Shan
Junping Zhang
Ge Wang
Mannudeep K. Kalra
53
79
0
30 Oct 2018
Deep Learning in Information Security
S. Thaler
Vlado Menkovski
M. Petković
63
10
0
12 Sep 2018
Interpreting Deep Learning: The Machine Learning Rorschach Test?
Adam S. Charles
AAML
HAI
AI4CE
105
9
0
01 Jun 2018
Potentials and Limitations of Deep Neural Networks for Cognitive Robots
Doreen Jirak
S. Wermter
41
5
0
02 May 2018
Probing Physics Knowledge Using Tools from Developmental Psychology
Luis S. Piloto
Ari Weinstein
TB Dhruva
Arun Ahuja
M. Berk Mirza
Greg Wayne
David Amos
Chia-Chun Hung
M. Botvinick
78
34
0
03 Apr 2018
Assessing Shape Bias Property of Convolutional Neural Networks
Hossein Hosseini
Baicen Xiao
Mayoore S. Jaiswal
Radha Poovendran
68
36
0
21 Mar 2018
Semantic Adversarial Examples
Hossein Hosseini
Radha Poovendran
GAN
AAML
108
199
0
16 Mar 2018
Few-Shot Learning with Metric-Agnostic Conditional Embeddings
Nathan Hilliard
Lawrence Phillips
Scott Howland
A. Yankov
Court D. Corley
Nathan Oken Hodas
SSL
85
159
0
12 Feb 2018
Evaluating Compositionality in Sentence Embeddings
Ishita Dasgupta
Demi Guo
Andreas Stuhlmuller
S. Gershman
Noah D. Goodman
CoGe
98
121
0
12 Feb 2018
Cognitive Deficit of Deep Learning in Numerosity
Xiaolin Wu
Xi Zhang
X. Shu
63
11
0
09 Feb 2018
1
2
Next