ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.06422
  4. Cited By
Domain Adaptation by Using Causal Inference to Predict Invariant
  Conditional Distributions
v1v2v3 (latest)

Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions

20 July 2017
Sara Magliacane
T. V. Ommen
Tom Claassen
Stephan Bongers
Philip Versteeg
Joris M. Mooij
    OODCML
ArXiv (abs)PDFHTML

Papers citing "Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions"

50 / 138 papers shown
Title
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects
  Estimation
Transfer Learning on Heterogeneous Feature Spaces for Treatment Effects Estimation
Ioana Bica
M. Schaar
OODCML
72
22
0
08 Oct 2022
Learning Invariant Representations under General Interventions on the
  Response
Learning Invariant Representations under General Interventions on the Response
Kang Du
Yu Xiang
OOD
103
8
0
22 Aug 2022
Subtype-Aware Dynamic Unsupervised Domain Adaptation
Subtype-Aware Dynamic Unsupervised Domain Adaptation
Xiaofeng Liu
Fangxu Xing
Jane You
Jun Lu
C.-C. Jay Kuo
Xiaofeng Liu
Jonghye Woo
OOD
116
7
0
16 Aug 2022
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
DAPDAG: Domain Adaptation via Perturbed DAG Reconstruction
Yanke Li
Hatt Tobias
Ioana Bica
M. Schaar
CML
78
0
0
02 Aug 2022
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
PAC-Bayesian Domain Adaptation Bounds for Multiclass Learners
Anthony Sicilia
Katherine Atwell
Malihe Alikhani
Seong Jae Hwang
BDL
93
10
0
12 Jul 2022
Invariant and Transportable Representations for Anti-Causal Domain
  Shifts
Invariant and Transportable Representations for Anti-Causal Domain Shifts
Yibo Jiang
Victor Veitch
OOD
189
36
0
04 Jul 2022
On the Generalization and Adaption Performance of Causal Models
On the Generalization and Adaption Performance of Causal Models
Nino Scherrer
Anirudh Goyal
Stefan Bauer
Yoshua Bengio
Nan Rosemary Ke
CMLOODBDLTTA
80
8
0
09 Jun 2022
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
In the Eye of the Beholder: Robust Prediction with Causal User Modeling
Amir Feder
G. Horowitz
Yoav Wald
Roi Reichart
Nir Rosenfeld
OOD
91
7
0
01 Jun 2022
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Evaluating Robustness to Dataset Shift via Parametric Robustness Sets
Nikolaj Thams
Michael Oberst
David Sontag
OOD
108
12
0
31 May 2022
PAC Generalization via Invariant Representations
PAC Generalization via Invariant Representations
Advait Parulekar
Karthikeyan Shanmugam
Sanjay Shakkottai
93
4
0
30 May 2022
On Causality in Domain Adaptation and Semi-Supervised Learning: an
  Information-Theoretic Analysis
On Causality in Domain Adaptation and Semi-Supervised Learning: an Information-Theoretic Analysis
Xuetong Wu
Biwei Huang
J. Manton
U. Aickelin
Jingge Zhu
CML
62
2
0
10 May 2022
Causal Transportability for Visual Recognition
Causal Transportability for Visual Recognition
Chengzhi Mao
K. Xia
James Wang
Hongya Wang
Junfeng Yang
Elias Bareinboim
Carl Vondrick
CMLOODBDL
108
35
0
26 Apr 2022
Improving generalization of machine learning-identified biomarkers with
  causal modeling: an investigation into immune receptor diagnostics
Improving generalization of machine learning-identified biomarkers with causal modeling: an investigation into immune receptor diagnostics
Milena Pavlović
Ghadi S. Al Hajj
Chakravarthi Kanduri
J. Pensar
Mollie E. Wood
L. Sollid
Victor Greiff
G. K. Sandve
CMLOODAI4CE
61
4
0
20 Apr 2022
Causal Domain Adaptation with Copula Entropy based Conditional
  Independence Test
Causal Domain Adaptation with Copula Entropy based Conditional Independence Test
Jian Ma
TTAOODCML
38
0
0
27 Feb 2022
Generalizable Information Theoretic Causal Representation
Generalizable Information Theoretic Causal Representation
Mengyue Yang
Xin-Qiang Cai
Furui Liu
Xu Chen
Zhitang Chen
Jianye Hao
Jun Wang
OODCML
120
1
0
17 Feb 2022
Exploiting Independent Instruments: Identification and Distribution
  Generalization
Exploiting Independent Instruments: Identification and Distribution Generalization
Sorawit Saengkyongam
Leonard Henckel
Niklas Pfister
J. Peters
88
18
0
03 Feb 2022
Diagnosing failures of fairness transfer across distribution shift in
  real-world medical settings
Diagnosing failures of fairness transfer across distribution shift in real-world medical settings
Jessica Schrouff
Natalie Harris
Oluwasanmi Koyejo
Ibrahim Alabdulmohsin
Eva Schnider
...
Vivek Natarajan
Alan Karthikesalingam
Katherine A. Heller
Silvia Chiappa
Alexander DÁmour
OOD
166
56
0
02 Feb 2022
Invariant Ancestry Search
Invariant Ancestry Search
Phillip B. Mogensen
Nikolaj Thams
J. Peters
96
5
0
02 Feb 2022
Efficiently Disentangle Causal Representations
Efficiently Disentangle Causal Representations
Yuanpeng Li
Joel Hestness
Mohamed Elhoseiny
Liang Zhao
Kenneth Church
OODCML
29
1
0
06 Jan 2022
The Connection between Out-of-Distribution Generalization and Privacy of
  ML Models
The Connection between Out-of-Distribution Generalization and Privacy of ML Models
Divyat Mahajan
Shruti Tople
Amit Sharma
OOD
112
7
0
07 Oct 2021
Beyond Discriminant Patterns: On the Robustness of Decision Rule
  Ensembles
Beyond Discriminant Patterns: On the Robustness of Decision Rule Ensembles
Xin Du
S. Ramamoorthy
W. Duivesteijn
Jin Tian
Mykola Pechenizkiy
72
3
0
21 Sep 2021
Sample Observed Effects: Enumeration, Randomization and Generalization
Sample Observed Effects: Enumeration, Randomization and Generalization
Andre F. Ribeiro
CML
38
4
0
09 Aug 2021
Towards Unbiased Visual Emotion Recognition via Causal Intervention
Towards Unbiased Visual Emotion Recognition via Causal Intervention
Yuedong Chen
Xu Yang
Tat-Jen Cham
Jianfei Cai
OODCML
69
19
0
26 Jul 2021
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
Which Invariance Should We Transfer? A Causal Minimax Learning Approach
Mingzhou Liu
Xiangyu Zheng
Xinwei Sun
Fang Fang
Yizhou Wang
OOD
47
2
0
05 Jul 2021
Finding Valid Adjustments under Non-ignorability with Minimal DAG
  Knowledge
Finding Valid Adjustments under Non-ignorability with Minimal DAG Knowledge
Abhin Shah
Karthikeyan Shanmugam
Kartik Ahuja
CML
69
13
0
22 Jun 2021
Stratified Learning: A General-Purpose Statistical Method for Improved
  Learning under Covariate Shift
Stratified Learning: A General-Purpose Statistical Method for Improved Learning under Covariate Shift
Maximilian Autenrieth
David van Dyk
R. Trotta
D. Stenning
OOD
23
3
0
21 Jun 2021
Independent mechanism analysis, a new concept?
Independent mechanism analysis, a new concept?
Luigi Gresele
Julius von Kügelgen
Vincent Stimper
Bernhard Schölkopf
M. Besserve
CML
109
102
0
09 Jun 2021
Towards a Theoretical Framework of Out-of-Distribution Generalization
Towards a Theoretical Framework of Out-of-Distribution Generalization
Haotian Ye
Chuanlong Xie
Tianle Cai
Ruichen Li
Zhenguo Li
Liwei Wang
OODDOOD
136
112
0
08 Jun 2021
An Information-theoretic Approach to Distribution Shifts
An Information-theoretic Approach to Distribution Shifts
Marco Federici
Ryota Tomioka
Patrick Forré
OOD
90
20
0
07 Jun 2021
Contrastive ACE: Domain Generalization Through Alignment of Causal
  Mechanisms
Contrastive ACE: Domain Generalization Through Alignment of Causal Mechanisms
Yunqi Wang
Furui Liu
Zhitang Chen
Qing Lian
Guangyong Chen
Jianye Hao
Yik-Chung Wu
OODCML
72
35
0
02 Jun 2021
Invariant Policy Learning: A Causal Perspective
Invariant Policy Learning: A Causal Perspective
Sorawit Saengkyongam
Nikolaj Thams
J. Peters
Niklas Pfister
CMLOffRL
85
15
0
01 Jun 2021
Adaptive Multi-Source Causal Inference
Adaptive Multi-Source Causal Inference
Thanh Vinh Vo
Pengfei Wei
T. Hoang
Tze-Yun Leong
92
1
0
31 May 2021
Robust Learning in Heterogeneous Contexts
Robust Learning in Heterogeneous Contexts
Muhammad Osama
Dave Zachariah
Petre Stoica
OOD
14
2
0
18 May 2021
Zero-Shot Recommender Systems
Zero-Shot Recommender Systems
Hao Ding
Yifei Ma
Anoop Deoras
Bernie Wang
Hao Wang
VLM
53
94
0
18 May 2021
Learning Under Adversarial and Interventional Shifts
Learning Under Adversarial and Interventional Shifts
Harvineet Singh
Shalmali Joshi
Finale Doshi-Velez
Himabindu Lakkaraju
OOD
58
3
0
29 Mar 2021
Learning Domain Invariant Representations for Generalizable Person
  Re-Identification
Learning Domain Invariant Representations for Generalizable Person Re-Identification
Yi-Fan Zhang
Zhang Zhang
Da Li
Zhen Jia
Liang Wang
Tieniu Tan
OOD
118
44
0
29 Mar 2021
Regularizing towards Causal Invariance: Linear Models with Proxies
Regularizing towards Causal Invariance: Linear Models with Proxies
Michael Oberst
Nikolaj Thams
J. Peters
David Sontag
OOD
78
25
0
03 Mar 2021
Relate and Predict: Structure-Aware Prediction with Jointly Optimized
  Neural DAG
Relate and Predict: Structure-Aware Prediction with Jointly Optimized Neural DAG
Arshdeep Sekhon
Zhe Wang
Yanjun Qi
GNN
23
0
0
03 Mar 2021
Scalable Causal Domain Adaptation
Scalable Causal Domain Adaptation
Mohammad Ali Javidian
O. Pandey
Pooyan Jamshidi
CML
65
4
0
27 Feb 2021
Incorporating Causal Graphical Prior Knowledge into Predictive Modeling
  via Simple Data Augmentation
Incorporating Causal Graphical Prior Knowledge into Predictive Modeling via Simple Data Augmentation
Takeshi Teshima
Masashi Sugiyama
CML
91
13
0
27 Feb 2021
Nonlinear Invariant Risk Minimization: A Causal Approach
Nonlinear Invariant Risk Minimization: A Causal Approach
Chaochao Lu
Yuhuai Wu
Jośe Miguel Hernández-Lobato
Bernhard Schölkopf
CMLOOD
130
52
0
24 Feb 2021
Towards Causal Representation Learning
Towards Causal Representation Learning
Bernhard Schölkopf
Francesco Locatello
Stefan Bauer
Nan Rosemary Ke
Nal Kalchbrenner
Anirudh Goyal
Yoshua Bengio
OODCMLAI4CE
155
322
0
22 Feb 2021
On Calibration and Out-of-domain Generalization
On Calibration and Out-of-domain Generalization
Yoav Wald
Amir Feder
D. Greenfeld
Uri Shalit
OODD
127
158
0
20 Feb 2021
Selecting Treatment Effects Models for Domain Adaptation Using Causal
  Knowledge
Selecting Treatment Effects Models for Domain Adaptation Using Causal Knowledge
Trent Kyono
Ioana Bica
Zhaozhi Qian
Mihaela van der Schaar
OODCML
33
7
0
11 Feb 2021
Out-of-Distribution Generalization Analysis via Influence Function
Out-of-Distribution Generalization Analysis via Influence Function
Haotian Ye
Chuanlong Xie
Yue Liu
Zhenguo Li
OOD
52
13
0
21 Jan 2021
Model Compression for Domain Adaptation through Causal Effect Estimation
Model Compression for Domain Adaptation through Causal Effect Estimation
Guy Rotman
Amir Feder
Roi Reichart
CML
92
7
0
18 Jan 2021
Learning to Ignore: Fair and Task Independent Representations
Learning to Ignore: Fair and Task Independent Representations
Linda Helen Boedi
H. Grabner
FaMLOOD
26
1
0
11 Jan 2021
Subtype-aware Unsupervised Domain Adaptation for Medical Diagnosis
Subtype-aware Unsupervised Domain Adaptation for Medical Diagnosis
Xiaofeng Liu
Xiongchang Liu
Bo Hu
Wenxuan Ji
Fangxu Xing
Jun Lu
J. You
C.-C. Jay Kuo
Xiaofeng Liu
Jonghye Woo
OOD
148
34
0
01 Jan 2021
Invariant Representation Learning for Treatment Effect Estimation
Invariant Representation Learning for Treatment Effect Estimation
Claudia Shi
Victor Veitch
David M. Blei
OODCML
57
31
0
24 Nov 2020
Balance Regularized Neural Network Models for Causal Effect Estimation
Balance Regularized Neural Network Models for Causal Effect Estimation
Mehrdad Farajtabar
Andrew Lee
Yuanjian Feng
Vishal Gupta
Peter Dolan
Harish Chandran
M. Szummer
CML
49
6
0
23 Nov 2020
Previous
123
Next