ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1707.06422
  4. Cited By
Domain Adaptation by Using Causal Inference to Predict Invariant
  Conditional Distributions
v1v2v3 (latest)

Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions

20 July 2017
Sara Magliacane
T. V. Ommen
Tom Claassen
Stephan Bongers
Philip Versteeg
Joris M. Mooij
    OODCML
ArXiv (abs)PDFHTML

Papers citing "Domain Adaptation by Using Causal Inference to Predict Invariant Conditional Distributions"

50 / 138 papers shown
Title
Representation Learning Preserving Ignorability and Covariate Matching for Treatment Effects
Representation Learning Preserving Ignorability and Covariate Matching for Treatment Effects
Praharsh Nanavati
Ranjitha Prasad
Karthikeyan Shanmugam
OODCML
125
0
0
29 Apr 2025
Causal DAG Summarization (Full Version)
Causal DAG Summarization (Full Version)
Anna Zeng
Michael Cafarella
Batya Kenig
Markos Markakis
Brit Youngmann
Babak Salimi
CML
57
2
0
21 Apr 2025
Partial Transportability for Domain Generalization
Partial Transportability for Domain Generalization
Kasra Jalaldoust
Alexis Bellot
Elias Bareinboim
OOD
130
6
0
30 Mar 2025
The Relativity of Causal Knowledge
The Relativity of Causal Knowledge
Gabriele DÁcunto
Claudio Battiloro
53
0
0
13 Mar 2025
Achievable distributional robustness when the robust risk is only partially identified
Achievable distributional robustness when the robust risk is only partially identified
Julia Kostin
Nicola Gnecco
Fanny Yang
148
3
0
04 Feb 2025
Wasserstein-regularized Conformal Prediction under General Distribution Shift
Wasserstein-regularized Conformal Prediction under General Distribution Shift
Rui Xu
Chao Chen
Yue Sun
Parvathinathan Venkitasubramaniam
Sihong Xie
120
1
0
23 Jan 2025
SSL Framework for Causal Inconsistency between Structures and Representations
SSL Framework for Causal Inconsistency between Structures and Representations
Hang Chen
Xinyu Yang
Keqing Du
Wenya Wang
124
2
0
03 Jan 2025
Causal Invariance Learning via Efficient Optimization of a Nonconvex
  Objective
Causal Invariance Learning via Efficient Optimization of a Nonconvex Objective
Zhenyu Wang
Yifan Hu
Peter Buhlmann
Zijian Guo
187
3
0
16 Dec 2024
Multi-environment Topic Models
Multi-environment Topic Models
Dominic Sobhani
Amir Feder
David M. Blei
60
0
0
31 Oct 2024
Identifying General Mechanism Shifts in Linear Causal Representations
Identifying General Mechanism Shifts in Linear Causal Representations
Tianyu Chen
Kevin Bello
Francesco Locatello
Bryon Aragam
Pradeep Ravikumar
OODCML
89
3
0
31 Oct 2024
Considerations for Distribution Shift Robustness of Diagnostic Models in
  Healthcare
Considerations for Distribution Shift Robustness of Diagnostic Models in Healthcare
Arno Blaas
Adam Goliñski
Andrew C. Miller
Luca Zappella
J. Jacobsen
Christina Heinze-Deml
OOD
74
0
0
25 Oct 2024
Efficient Identification of Direct Causal Parents via Invariance and
  Minimum Error Testing
Efficient Identification of Direct Causal Parents via Invariance and Minimum Error Testing
Minh Le Nguyen
Mert R. Sabuncu
54
1
0
19 Sep 2024
Causal Discovery from Time-Series Data with Short-Term Invariance-Based
  Convolutional Neural Networks
Causal Discovery from Time-Series Data with Short-Term Invariance-Based Convolutional Neural Networks
Rujia Shen
Boran Wang
Chao Zhao
Yi Guan
Jingchi Jiang
CMLBDLAI4TS
82
0
0
15 Aug 2024
Mind the Graph When Balancing Data for Fairness or Robustness
Mind the Graph When Balancing Data for Fairness or Robustness
Jessica Schrouff
Alexis Bellot
Amal Rannen-Triki
Alan Malek
Isabela Albuquerque
Arthur Gretton
Alexander DÁmour
Silvia Chiappa
OODCML
112
3
0
25 Jun 2024
Learning When the Concept Shifts: Confounding, Invariance, and Dimension
  Reduction
Learning When the Concept Shifts: Confounding, Invariance, and Dimension Reduction
Kulunu Dharmakeerthi
Y. Hur
Tengyuan Liang
72
0
0
22 Jun 2024
Self-Distilled Disentangled Learning for Counterfactual Prediction
Self-Distilled Disentangled Learning for Counterfactual Prediction
Xinshu Li
Mingming Gong
Lina Yao
CML
77
2
0
09 Jun 2024
Unbiased Faster R-CNN for Single-source Domain Generalized Object
  Detection
Unbiased Faster R-CNN for Single-source Domain Generalized Object Detection
Yajing Liu
Shijun Zhou
Xiyao Liu
Chunhui Hao
Baojie Fan
Jiandong Tian
ObjD
115
14
0
24 May 2024
Invariant Subspace Decomposition
Invariant Subspace Decomposition
Margherita Lazzaretto
Jonas Peters
Niklas Pfister
93
0
0
15 Apr 2024
Proxy Methods for Domain Adaptation
Proxy Methods for Domain Adaptation
Katherine Tsai
Stephen Pfohl
Olawale Salaudeen
Nicole Chiou
Matt J. Kusner
Alexander DÁmour
Oluwasanmi Koyejo
Arthur Gretton
OOD
86
3
0
12 Mar 2024
OTClean: Data Cleaning for Conditional Independence Violations using
  Optimal Transport
OTClean: Data Cleaning for Conditional Independence Violations using Optimal Transport
Alireza Pirhadi
Mohammad Hossein Moslemi
Alexander Cloninger
Mostafa Milani
Babak Salimi
75
5
0
04 Mar 2024
Evaluating and Correcting Performative Effects of Decision Support
  Systems via Causal Domain Shift
Evaluating and Correcting Performative Effects of Decision Support Systems via Causal Domain Shift
Philip A. Boeken
O. Zoeter
Joris M. Mooij
123
1
0
01 Mar 2024
Towards Context-Aware Domain Generalization: Understanding the Benefits
  and Limits of Marginal Transfer Learning
Towards Context-Aware Domain Generalization: Understanding the Benefits and Limits of Marginal Transfer Learning
Jens Müller
Lars Kühmichel
Martin Rohbeck
Stefan T. Radev
Ullrich Kothe
OOD
82
0
0
15 Dec 2023
Invariance & Causal Representation Learning: Prospects and Limitations
Invariance & Causal Representation Learning: Prospects and Limitations
Simon Bing
Jonas Wahl
Urmi Ninad
Jakob Runge
CMLOOD
150
3
0
06 Dec 2023
Why Do Probabilistic Clinical Models Fail To Transport Between Sites?
Why Do Probabilistic Clinical Models Fail To Transport Between Sites?
Thomas A. Lasko
Eric V. Strobl
William W Stead
OOD
83
9
0
08 Nov 2023
Confounder Balancing in Adversarial Domain Adaptation for Pre-Trained
  Large Models Fine-Tuning
Confounder Balancing in Adversarial Domain Adaptation for Pre-Trained Large Models Fine-Tuning
Shuoran Jiang
Qingcai Chen
Yang Xiang
Youcheng Pan
Xiangping Wu
AI4CE
126
1
0
24 Oct 2023
Specify Robust Causal Representation from Mixed Observations
Specify Robust Causal Representation from Mixed Observations
Mengyue Yang
Xin-Qiang Cai
Furui Liu
Weinan Zhang
Jun Wang
CMLOOD
111
7
0
21 Oct 2023
Data Augmentations for Improved (Large) Language Model Generalization
Data Augmentations for Improved (Large) Language Model Generalization
Amir Feder
Yoav Wald
Claudia Shi
Suchi Saria
David M. Blei
OODCML
98
9
0
19 Oct 2023
Boosted Control Functions
Boosted Control Functions
Nicola Gnecco
Jonas Peters
Sebastian Engelke
Niklas Pfister
72
2
0
09 Oct 2023
Subspace Identification for Multi-Source Domain Adaptation
Subspace Identification for Multi-Source Domain Adaptation
Zijian Li
Ruichu Cai
Guan-Hong Chen
Boyang Sun
Zijian Li
Kun Zhang
88
35
0
07 Oct 2023
Invariant Learning via Probability of Sufficient and Necessary Causes
Invariant Learning via Probability of Sufficient and Necessary Causes
Mengyue Yang
Zhen Fang
Yonggang Zhang
Yali Du
Furui Liu
Jean-François Ton
Jianhong Wang
Jun Wang
OODD
132
14
0
22 Sep 2023
Prominent Roles of Conditionally Invariant Components in Domain
  Adaptation: Theory and Algorithms
Prominent Roles of Conditionally Invariant Components in Domain Adaptation: Theory and Algorithms
Keru Wu
Yuansi Chen
Wooseok Ha
Ting Yu
CML
80
2
0
19 Sep 2023
Loop Polarity Analysis to Avoid Underspecification in Deep Learning
Loop Polarity Analysis to Avoid Underspecification in Deep Learning
JR DONALD MARTIN
St. Louis
41
0
0
18 Sep 2023
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning
  for Medical Imaging
No Fair Lunch: A Causal Perspective on Dataset Bias in Machine Learning for Medical Imaging
Charles Jones
Daniel Coelho De Castro
Fabio De Sousa Ribeiro
Ozan Oktay
Melissa McCradden
Ben Glocker
FaMLCML
108
9
0
31 Jul 2023
Causality-oriented robustness: exploiting general noise interventions
Causality-oriented robustness: exploiting general noise interventions
Xinwei Shen
Peter Buhlmann
Armeen Taeb
OOD
131
9
0
18 Jul 2023
Results on Counterfactual Invariance
Results on Counterfactual Invariance
Jake Fawkes
R. Evans
46
4
0
17 Jul 2023
Intervention Generalization: A View from Factor Graph Models
Intervention Generalization: A View from Factor Graph Models
Gecia Bravo Hermsdorff
David S. Watson
Jialin Yu
Jakob Zeitler
Ricardo M. A. Silva
CML
77
6
0
06 Jun 2023
An Invariant Learning Characterization of Controlled Text Generation
An Invariant Learning Characterization of Controlled Text Generation
Carolina Zheng
Claudia Shi
Keyon Vafa
Amir Feder
David M. Blei
OOD
98
8
0
31 May 2023
Shift-Robust Molecular Relational Learning with Causal Substructure
Shift-Robust Molecular Relational Learning with Causal Substructure
Namkyeong Lee
Kanghoon Yoon
Gyoung S. Na
Sein Kim
Chanyoung Park
99
16
0
29 May 2023
Causal Information Splitting: Engineering Proxy Features for Robustness
  to Distribution Shifts
Causal Information Splitting: Engineering Proxy Features for Robustness to Distribution Shifts
Bijan Mazaheri
Atalanti Mastakouri
Dominik Janzing
Mila Hardt
OOD
87
4
0
10 May 2023
CMVAE: Causal Meta VAE for Unsupervised Meta-Learning
CMVAE: Causal Meta VAE for Unsupervised Meta-Learning
Guodong Qi
Huimin Yu
CMLSSL
79
5
0
20 Feb 2023
Generative Causal Representation Learning for Out-of-Distribution Motion
  Forecasting
Generative Causal Representation Learning for Out-of-Distribution Motion Forecasting
Shayan Shirahmad Gale Bagi
Zahra Gharaee
Oliver Schulte
Mark Crowley
OODDOOD
78
13
0
17 Feb 2023
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Discovering Optimal Scoring Mechanisms in Causal Strategic Prediction
Tom Yan
Shantanu Gupta
Zachary Chase Lipton
CML
61
1
0
14 Feb 2023
Generalized Invariant Matching Property via LASSO
Generalized Invariant Matching Property via LASSO
Kang Du
Yu Xiang
OOD
105
6
0
14 Jan 2023
Evaluation of Induced Expert Knowledge in Causal Structure Learning by
  NOTEARS
Evaluation of Induced Expert Knowledge in Causal Structure Learning by NOTEARS
Jawad Chowdhury
Rezaur Rashid
G. Terejanu
CML
73
10
0
04 Jan 2023
Adapting to Latent Subgroup Shifts via Concepts and Proxies
Adapting to Latent Subgroup Shifts via Concepts and Proxies
Ibrahim Alabdulmohsin
Nicole Chiou
Alexander DÁmour
Arthur Gretton
Sanmi Koyejo
Matt J. Kusner
Stephen Pfohl
Olawale Salaudeen
Jessica Schrouff
Katherine Tsai
130
11
0
21 Dec 2022
Interpretability and causal discovery of the machine learning models to
  predict the production of CBM wells after hydraulic fracturing
Interpretability and causal discovery of the machine learning models to predict the production of CBM wells after hydraulic fracturing
Chao Min
Guo-quan Wen
Liang Gou
Xiaogang Li
Zhaozhong Yang
CML
34
12
0
21 Dec 2022
Causal Inference via Style Transfer for Out-of-distribution
  Generalisation
Causal Inference via Style Transfer for Out-of-distribution Generalisation
Toan Nguyen
Kien Do
D. Nguyen
Bao Duong
T. Nguyen
CMLOODDOOD
72
10
0
06 Dec 2022
A Survey on Causal Representation Learning and Future Work for Medical
  Image Analysis
A Survey on Causal Representation Learning and Future Work for Medical Image Analysis
Chang-Tien Lu
OODBDLCMLMedIm
107
0
0
28 Oct 2022
Bridging Machine Learning and Sciences: Opportunities and Challenges
Bridging Machine Learning and Sciences: Opportunities and Challenges
Taoli Cheng
UQCVOODAI4CE
61
2
0
24 Oct 2022
Towards Out-of-Distribution Sequential Event Prediction: A Causal
  Treatment
Towards Out-of-Distribution Sequential Event Prediction: A Causal Treatment
Chenxiao Yang
Qitian Wu
Qingsong Wen
Zhiqiang Zhou
Liang Sun
Junchi Yan
OODDOOD
83
22
0
24 Oct 2022
123
Next