Papers
Communities
Organizations
Events
Blog
Pricing
Feedback
Contact Sales
Search
Open menu
Home
Papers
1707.06618
Cited By
v1
v2
v3 (latest)
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
20 July 2017
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization"
47 / 97 papers shown
Title
State-Dependent Temperature Control for Langevin Diffusions
Xuefeng Gao
Z. Xu
X. Zhou
167
29
0
15 Nov 2020
Direction Matters: On the Implicit Bias of Stochastic Gradient Descent with Moderate Learning Rate
Jingfeng Wu
Difan Zou
Vladimir Braverman
Quanquan Gu
122
18
0
04 Nov 2020
A Contour Stochastic Gradient Langevin Dynamics Algorithm for Simulations of Multi-modal Distributions
Wei Deng
Guang Lin
F. Liang
BDL
112
29
0
19 Oct 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
178
37
0
19 Oct 2020
Accelerating Convergence of Replica Exchange Stochastic Gradient MCMC via Variance Reduction
Wei Deng
Qi Feng
G. Karagiannis
Guang Lin
F. Liang
115
9
0
02 Oct 2020
Adversarially Robust Learning via Entropic Regularization
Gauri Jagatap
Ameya Joshi
A. B. Chowdhury
S. Garg
Chinmay Hegde
OOD
159
12
0
27 Aug 2020
Efficient hyperparameter optimization by way of PAC-Bayes bound minimization
John J. Cherian
Andrew G. Taube
R. McGibbon
Panagiotis Angelikopoulos
Guy Blanc
M. Snarski
D. D. Richman
J. L. Klepeis
D. Shaw
67
5
0
14 Aug 2020
Non-convex Learning via Replica Exchange Stochastic Gradient MCMC
Wei Deng
Qi Feng
Liyao (Mars) Gao
F. Liang
Guang Lin
BDL
121
49
0
12 Aug 2020
Adaptive Inertia: Disentangling the Effects of Adaptive Learning Rate and Momentum
Zeke Xie
Xinrui Wang
Huishuai Zhang
Issei Sato
Masashi Sugiyama
ODL
200
52
0
29 Jun 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
92
27
0
25 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
154
53
0
14 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
114
81
0
27 May 2020
Robust Deep Reinforcement Learning against Adversarial Perturbations on State Observations
Huan Zhang
Hongge Chen
Chaowei Xiao
Yue Liu
Mingyan D. Liu
Duane S. Boning
Cho-Jui Hsieh
AAML
217
300
0
19 Mar 2020
Dimension-free convergence rates for gradient Langevin dynamics in RKHS
Boris Muzellec
Kanji Sato
Mathurin Massias
Taiji Suzuki
177
12
0
29 Feb 2020
Fractional Underdamped Langevin Dynamics: Retargeting SGD with Momentum under Heavy-Tailed Gradient Noise
Umut Simsekli
Lingjiong Zhu
Yee Whye Teh
Mert Gurbuzbalaban
130
52
0
13 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
162
18
0
13 Feb 2020
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
160
21
0
23 Jan 2020
On the Heavy-Tailed Theory of Stochastic Gradient Descent for Deep Neural Networks
Umut Simsekli
Mert Gurbuzbalaban
T. H. Nguyen
G. Richard
Levent Sagun
136
60
0
29 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
76
9
0
02 Nov 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
148
45
0
23 Oct 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
175
51
0
04 Oct 2019
First Exit Time Analysis of Stochastic Gradient Descent Under Heavy-Tailed Gradient Noise
T. H. Nguyen
Umut Simsekli
Mert Gurbuzbalaban
G. Richard
95
69
0
21 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
149
73
0
19 Jun 2019
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
122
45
0
30 May 2019
On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case
N. H. Chau
'. Moulines
Miklós Rásonyi
Sotirios Sabanis
Ying Zhang
143
42
0
30 May 2019
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
110
33
0
30 Apr 2019
Convergence rates for the stochastic gradient descent method for non-convex objective functions
Benjamin J. Fehrman
Benjamin Gess
Arnulf Jentzen
133
104
0
02 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
79
11
0
25 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
151
286
0
11 Feb 2019
On Generalization Error Bounds of Noisy Gradient Methods for Non-Convex Learning
Jian Li
Xuanyuan Luo
Mingda Qiao
141
92
0
02 Feb 2019
Non-Asymptotic Analysis of Fractional Langevin Monte Carlo for Non-Convex Optimization
T. H. Nguyen
Umut Simsekli
G. Richard
104
29
0
22 Jan 2019
A Tail-Index Analysis of Stochastic Gradient Noise in Deep Neural Networks
Umut Simsekli
Levent Sagun
Mert Gurbuzbalaban
231
268
0
18 Jan 2019
Breaking Reversibility Accelerates Langevin Dynamics for Global Non-Convex Optimization
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
112
33
0
19 Dec 2018
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
108
42
0
06 Dec 2018
Global Non-convex Optimization with Discretized Diffusions
Murat A. Erdogdu
Lester W. Mackey
Ohad Shamir
130
106
0
29 Oct 2018
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
133
23
0
22 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
144
63
0
12 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
182
46
0
05 Sep 2018
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
195
163
0
24 Jul 2018
Stochastic Nested Variance Reduction for Nonconvex Optimization
Dongruo Zhou
Pan Xu
Quanquan Gu
143
151
0
20 Jun 2018
Asynchronous Stochastic Quasi-Newton MCMC for Non-Convex Optimization
Umut Simsekli
Çağatay Yıldız
T. H. Nguyen
G. Richard
A. Cemgil
89
22
0
07 Jun 2018
Adaptive Stochastic Gradient Langevin Dynamics: Taming Convergence and Saddle Point Escape Time
Hejian Sang
Jia-Wei Liu
ODL
126
1
0
23 May 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
116
171
0
04 May 2018
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
151
228
0
26 Feb 2018
Stochastic Variance-Reduced Cubic Regularized Newton Method
Dongruo Zhou
Pan Xu
Quanquan Gu
ODL
93
45
0
13 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
90
32
0
13 Feb 2018
User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient
A. Dalalyan
Avetik G. Karagulyan
237
303
0
29 Sep 2017
Previous
1
2