ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.00095
  4. Cited By
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
v1v2v3v4 (latest)

User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient

29 September 2017
A. Dalalyan
Avetik G. Karagulyan
ArXiv (abs)PDFHTML

Papers citing "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient"

50 / 133 papers shown
Title
Decentralized Langevin Dynamics over a Directed Graph
Decentralized Langevin Dynamics over a Directed Graph
Alexander Kolesov
Vyacheslav Kungurtsev
63
2
0
06 Mar 2021
Stochastic Gradient Langevin Dynamics with Variance Reduction
Stochastic Gradient Langevin Dynamics with Variance Reduction
Zhishen Huang
Stephen Becker
82
7
0
12 Feb 2021
Higher Order Generalization Error for First Order Discretization of
  Langevin Diffusion
Higher Order Generalization Error for First Order Discretization of Langevin Diffusion
Mufan Li
Maxime Gazeau
33
1
0
11 Feb 2021
Unadjusted Langevin algorithm for non-convex weakly smooth potentials
Unadjusted Langevin algorithm for non-convex weakly smooth potentials
D. Nguyen
Xin Dang
Yixin Chen
78
14
0
16 Jan 2021
A fresh take on 'Barker dynamics' for MCMC
A fresh take on 'Barker dynamics' for MCMC
Max Hird
Samuel Livingstone
Giacomo Zanella
93
9
0
17 Dec 2020
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint
  Sampling Method
On the Ergodicity, Bias and Asymptotic Normality of Randomized Midpoint Sampling Method
Ye He
Krishnakumar Balasubramanian
Murat A. Erdogdu
66
35
0
06 Nov 2020
Random Coordinate Underdamped Langevin Monte Carlo
Random Coordinate Underdamped Langevin Monte Carlo
Zhiyan Ding
Qin Li
Jianfeng Lu
Stephen J. Wright
BDL
93
13
0
22 Oct 2020
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Riemannian Langevin Algorithm for Solving Semidefinite Programs
Mufan Li
Murat A. Erdogdu
118
29
0
21 Oct 2020
Faster Convergence of Stochastic Gradient Langevin Dynamics for
  Non-Log-Concave Sampling
Faster Convergence of Stochastic Gradient Langevin Dynamics for Non-Log-Concave Sampling
Difan Zou
Pan Xu
Quanquan Gu
108
36
0
19 Oct 2020
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet
  Log-Sobolev
Fast Convergence of Langevin Dynamics on Manifold: Geodesics meet Log-Sobolev
Tianlin Li
Qi Lei
Ioannis Panageas
65
20
0
11 Oct 2020
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Structured Logconcave Sampling with a Restricted Gaussian Oracle
Y. Lee
Ruoqi Shen
Kevin Tian
82
73
0
07 Oct 2020
Variance reduction for dependent sequences with applications to
  Stochastic Gradient MCMC
Variance reduction for dependent sequences with applications to Stochastic Gradient MCMC
Denis Belomestny
L. Iosipoi
Eric Moulines
A. Naumov
S. Samsonov
72
6
0
16 Aug 2020
Maximum likelihood estimation of regularisation parameters in
  high-dimensional inverse problems: an empirical Bayesian approach. Part II:
  Theoretical Analysis
Maximum likelihood estimation of regularisation parameters in high-dimensional inverse problems: an empirical Bayesian approach. Part II: Theoretical Analysis
Valentin De Bortoli
Alain Durmus
A. F. Vidal
Marcelo Pereyra
83
20
0
13 Aug 2020
Taming neural networks with TUSLA: Non-convex learning via adaptive
  stochastic gradient Langevin algorithms
Taming neural networks with TUSLA: Non-convex learning via adaptive stochastic gradient Langevin algorithms
A. Lovas
Iosif Lytras
Miklós Rásonyi
Sotirios Sabanis
88
26
0
25 Jun 2020
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
A Non-Asymptotic Analysis for Stein Variational Gradient Descent
Anna Korba
Adil Salim
Michael Arbel
Giulia Luise
Arthur Gretton
84
78
0
17 Jun 2020
An Analysis of Constant Step Size SGD in the Non-convex Regime:
  Asymptotic Normality and Bias
An Analysis of Constant Step Size SGD in the Non-convex Regime: Asymptotic Normality and Bias
Lu Yu
Krishnakumar Balasubramanian
S. Volgushev
Murat A. Erdogdu
106
52
0
14 Jun 2020
On the Convergence of Langevin Monte Carlo: The Interplay between Tail
  Growth and Smoothness
On the Convergence of Langevin Monte Carlo: The Interplay between Tail Growth and Smoothness
Murat A. Erdogdu
Rasa Hosseinzadeh
88
77
0
27 May 2020
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic
  Gradient MCMC
AMAGOLD: Amortized Metropolis Adjustment for Efficient Stochastic Gradient MCMC
Ruqi Zhang
A. Feder Cooper
Christopher De Sa
88
18
0
29 Feb 2020
On Thompson Sampling with Langevin Algorithms
On Thompson Sampling with Langevin Algorithms
Eric Mazumdar
Aldo Pacchiano
Yi-An Ma
Peter L. Bartlett
Michael I. Jordan
67
11
0
23 Feb 2020
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via
  Non-uniform Subsampling of Gradients
Improving Sampling Accuracy of Stochastic Gradient MCMC Methods via Non-uniform Subsampling of Gradients
Ruilin Li
Xin Wang
H. Zha
Molei Tao
34
4
0
20 Feb 2020
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo
  under local conditions for nonconvex optimization
Nonasymptotic analysis of Stochastic Gradient Hamiltonian Monte Carlo under local conditions for nonconvex optimization
Ömer Deniz Akyildiz
Sotirios Sabanis
97
17
0
13 Feb 2020
Wasserstein Control of Mirror Langevin Monte Carlo
Wasserstein Control of Mirror Langevin Monte Carlo
Kelvin Shuangjian Zhang
Gabriel Peyré
M. Fadili
Marcelo Pereyra
71
66
0
11 Feb 2020
Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms
Oracle Lower Bounds for Stochastic Gradient Sampling Algorithms
Niladri S. Chatterji
Peter L. Bartlett
Philip M. Long
63
8
0
01 Feb 2020
The reproducing Stein kernel approach for post-hoc corrected sampling
The reproducing Stein kernel approach for post-hoc corrected sampling
Liam Hodgkinson
R. Salomone
Fred Roosta
72
27
0
25 Jan 2020
Replica Exchange for Non-Convex Optimization
Replica Exchange for Non-Convex Optimization
Jing-rong Dong
Xin T. Tong
108
21
0
23 Jan 2020
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDLOODUQCV
97
34
0
22 Jan 2020
Estimating Normalizing Constants for Log-Concave Distributions:
  Algorithms and Lower Bounds
Estimating Normalizing Constants for Log-Concave Distributions: Algorithms and Lower Bounds
Rong Ge
Holden Lee
Jianfeng Lu
78
22
0
08 Nov 2019
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Proximal Langevin Algorithm: Rapid Convergence Under Isoperimetry
Andre Wibisono
144
49
0
04 Nov 2019
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Laplacian Smoothing Stochastic Gradient Markov Chain Monte Carlo
Bao Wang
Difan Zou
Quanquan Gu
Stanley Osher
BDL
62
9
0
02 Nov 2019
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
An Adaptive Empirical Bayesian Method for Sparse Deep Learning
Wei Deng
Xiao Zhang
F. Liang
Guang Lin
BDL
126
44
0
23 Oct 2019
Aggregated Gradient Langevin Dynamics
Aggregated Gradient Langevin Dynamics
Chao Zhang
Jiahao Xie
Zebang Shen
P. Zhao
Tengfei Zhou
Hui Qian
81
1
0
21 Oct 2019
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under
  local conditions in nonconvex optimization
Nonasymptotic estimates for Stochastic Gradient Langevin Dynamics under local conditions in nonconvex optimization
Ying Zhang
Ömer Deniz Akyildiz
Theodoros Damoulas
Sotirios Sabanis
106
47
0
04 Oct 2019
The Randomized Midpoint Method for Log-Concave Sampling
The Randomized Midpoint Method for Log-Concave Sampling
Ruoqi Shen
Y. Lee
125
118
0
12 Sep 2019
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
High-Order Langevin Diffusion Yields an Accelerated MCMC Algorithm
Wenlong Mou
Yian Ma
Martin J. Wainwright
Peter L. Bartlett
Michael I. Jordan
DiffM
84
85
0
28 Aug 2019
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal
  Rates without Convexity
Improved Bounds for Discretization of Langevin Diffusions: Near-Optimal Rates without Convexity
Wenlong Mou
Nicolas Flammarion
Martin J. Wainwright
Peter L. Bartlett
68
68
0
25 Jul 2019
Stochastic gradient Markov chain Monte Carlo
Stochastic gradient Markov chain Monte Carlo
Christopher Nemeth
Paul Fearnhead
BDL
83
139
0
16 Jul 2019
Bounding the error of discretized Langevin algorithms for non-strongly
  log-concave targets
Bounding the error of discretized Langevin algorithms for non-strongly log-concave targets
A. Dalalyan
Avetik G. Karagulyan
L. Riou-Durand
111
39
0
20 Jun 2019
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Stochastic Runge-Kutta Accelerates Langevin Monte Carlo and Beyond
Xuechen Li
Denny Wu
Lester W. Mackey
Murat A. Erdogdu
100
71
0
19 Jun 2019
Maximum Mean Discrepancy Gradient Flow
Maximum Mean Discrepancy Gradient Flow
Michael Arbel
Anna Korba
Adil Salim
Arthur Gretton
132
164
0
11 Jun 2019
Langevin Monte Carlo without smoothness
Langevin Monte Carlo without smoothness
Niladri S. Chatterji
Jelena Diakonikolas
Michael I. Jordan
Peter L. Bartlett
BDL
105
43
0
30 May 2019
On stochastic gradient Langevin dynamics with dependent data streams:
  the fully non-convex case
On stochastic gradient Langevin dynamics with dependent data streams: the fully non-convex case
N. H. Chau
'. Moulines
Miklós Rásonyi
Sotirios Sabanis
Ying Zhang
97
41
0
30 May 2019
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of
  multi-step gradients
Fast mixing of Metropolized Hamiltonian Monte Carlo: Benefits of multi-step gradients
Yuansi Chen
Raaz Dwivedi
Martin J. Wainwright
Bin Yu
55
102
0
29 May 2019
Stochastic Proximal Langevin Algorithm: Potential Splitting and
  Nonasymptotic Rates
Stochastic Proximal Langevin Algorithm: Potential Splitting and Nonasymptotic Rates
Adil Salim
D. Kovalev
Peter Richtárik
85
26
0
28 May 2019
Estimating Convergence of Markov chains with L-Lag Couplings
Estimating Convergence of Markov chains with L-Lag Couplings
N. Biswas
Pierre E. Jacob
Paul Vanetti
58
49
0
23 May 2019
Efficient MCMC Sampling with Dimension-Free Convergence Rate using
  ADMM-type Splitting
Efficient MCMC Sampling with Dimension-Free Convergence Rate using ADMM-type Splitting
Maxime Vono
Daniel Paulin
Arnaud Doucet
134
37
0
23 May 2019
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly
  Logconcave Distributions
Optimal Convergence Rate of Hamiltonian Monte Carlo for Strongly Logconcave Distributions
Zongchen Chen
Santosh Vempala
84
65
0
07 May 2019
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient
  Langevin Dynamics
On Stationary-Point Hitting Time and Ergodicity of Stochastic Gradient Langevin Dynamics
Xi Chen
S. Du
Xin T. Tong
79
33
0
30 Apr 2019
Optimal Scaling of Random-Walk Metropolis Algorithms on General Target
  Distributions
Optimal Scaling of Random-Walk Metropolis Algorithms on General Target Distributions
Jun Yang
Gareth O. Roberts
Jeffrey S. Rosenthal
OT
95
29
0
27 Apr 2019
Convergence of diffusions and their discretizations: from continuous to
  discrete processes and back
Convergence of diffusions and their discretizations: from continuous to discrete processes and back
Valentin De Bortoli
Alain Durmus
60
22
0
22 Apr 2019
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Learning
Huy N. Chau
M. Rásonyi
71
10
0
25 Mar 2019
Previous
123
Next