ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1710.00095
  4. Cited By
User-friendly guarantees for the Langevin Monte Carlo with inaccurate
  gradient
v1v2v3v4 (latest)

User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient

29 September 2017
A. Dalalyan
Avetik G. Karagulyan
ArXiv (abs)PDFHTML

Papers citing "User-friendly guarantees for the Langevin Monte Carlo with inaccurate gradient"

33 / 133 papers shown
Title
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry
  Suffices
Rapid Convergence of the Unadjusted Langevin Algorithm: Isoperimetry Suffices
Santosh Vempala
Andre Wibisono
150
269
0
20 Mar 2019
On Transformations in Stochastic Gradient MCMC
On Transformations in Stochastic Gradient MCMC
Soma Yokoi
Takuma Otsuka
Issei Sato
58
1
0
07 Mar 2019
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Cyclical Stochastic Gradient MCMC for Bayesian Deep Learning
Ruqi Zhang
Chunyuan Li
Jianyi Zhang
Changyou Chen
A. Wilson
BDL
88
278
0
11 Feb 2019
Is There an Analog of Nesterov Acceleration for MCMC?
Is There an Analog of Nesterov Acceleration for MCMC?
Yian Ma
Niladri Chatterji
Xiang Cheng
Nicolas Flammarion
Peter L. Bartlett
Michael I. Jordan
BDL
85
78
0
04 Feb 2019
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave
  Densities
Algorithmic Theory of ODEs and Sampling from Well-conditioned Logconcave Densities
Y. Lee
Zhao Song
Santosh Vempala
93
37
0
15 Dec 2018
On stochastic gradient Langevin dynamics with dependent data streams in
  the logconcave case
On stochastic gradient Langevin dynamics with dependent data streams in the logconcave case
M. Barkhagen
N. H. Chau
'. Moulines
Miklós Rásonyi
S. Sabanis
Ying Zhang
92
38
0
06 Dec 2018
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using
  Soft Markov Chain Decomposition
Simulated Tempering Langevin Monte Carlo II: An Improved Proof using Soft Markov Chain Decomposition
Rong Ge
Holden Lee
Andrej Risteski
189
29
0
29 Nov 2018
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
The promises and pitfalls of Stochastic Gradient Langevin Dynamics
N. Brosse
Alain Durmus
Eric Moulines
88
78
0
25 Nov 2018
Sampling Can Be Faster Than Optimization
Sampling Can Be Faster Than Optimization
Yian Ma
Yuansi Chen
Chi Jin
Nicolas Flammarion
Michael I. Jordan
72
186
0
20 Nov 2018
Non-Asymptotic Guarantees For Sampling by Stochastic Gradient Descent
Non-Asymptotic Guarantees For Sampling by Stochastic Gradient Descent
Avetik G. Karagulyan
21
1
0
02 Nov 2018
Stochastic Gradient MCMC for State Space Models
Stochastic Gradient MCMC for State Space Models
Christopher Aicher
Yian Ma
N. Foti
E. Fox
64
22
0
22 Oct 2018
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for
  Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and
  Momentum-Based Acceleration
Global Convergence of Stochastic Gradient Hamiltonian Monte Carlo for Non-Convex Stochastic Optimization: Non-Asymptotic Performance Bounds and Momentum-Based Acceleration
Xuefeng Gao
Mert Gurbuzbalaban
Lingjiong Zhu
105
60
0
12 Sep 2018
Stochastic Particle-Optimization Sampling and the Non-Asymptotic
  Convergence Theory
Stochastic Particle-Optimization Sampling and the Non-Asymptotic Convergence Theory
Jianyi Zhang
Ruiyi Zhang
Lawrence Carin
Changyou Chen
133
46
0
05 Sep 2018
Non-asymptotic bounds for sampling algorithms without log-concavity
Non-asymptotic bounds for sampling algorithms without log-concavity
Mateusz B. Majka
Aleksandar Mijatović
Lukasz Szpruch
76
75
0
21 Aug 2018
Higher Order Langevin Monte Carlo Algorithm
Higher Order Langevin Monte Carlo Algorithm
Sotirios Sabanis
Ying Zhang
91
23
0
02 Aug 2018
On sampling from a log-concave density using kinetic Langevin diffusions
On sampling from a log-concave density using kinetic Langevin diffusions
A. Dalalyan
L. Riou-Durand
120
158
0
24 Jul 2018
Contextual bandits with surrogate losses: Margin bounds and efficient
  algorithms
Contextual bandits with surrogate losses: Margin bounds and efficient algorithms
Dylan J. Foster
A. Krishnamurthy
157
18
0
28 Jun 2018
Scalable Gaussian Process Inference with Finite-data Mean and Variance
  Guarantees
Scalable Gaussian Process Inference with Finite-data Mean and Variance Guarantees
Jonathan H. Huggins
Trevor Campbell
Mikolaj Kasprzak
Tamara Broderick
93
15
0
26 Jun 2018
Exponential weights in multivariate regression and a low-rankness
  favoring prior
Exponential weights in multivariate regression and a low-rankness favoring prior
A. Dalalyan
71
16
0
25 Jun 2018
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Sharp convergence rates for Langevin dynamics in the nonconvex setting
Xiang Cheng
Niladri S. Chatterji
Yasin Abbasi-Yadkori
Peter L. Bartlett
Michael I. Jordan
82
167
0
04 May 2018
Computational Optimal Transport
Computational Optimal Transport
Gabriel Peyré
Marco Cuturi
OT
331
2,169
0
01 Mar 2018
Mirrored Langevin Dynamics
Mirrored Langevin Dynamics
Ya-Ping Hsieh
Ali Kavis
Paul Rolland
Volkan Cevher
102
85
0
27 Feb 2018
Analysis of Langevin Monte Carlo via convex optimization
Analysis of Langevin Monte Carlo via convex optimization
Alain Durmus
Szymon Majewski
B. Miasojedow
108
222
0
26 Feb 2018
Langevin Monte Carlo and JKO splitting
Langevin Monte Carlo and JKO splitting
Espen Bernton
88
80
0
23 Feb 2018
Sampling as optimization in the space of measures: The Langevin dynamics
  as a composite optimization problem
Sampling as optimization in the space of measures: The Langevin dynamics as a composite optimization problem
Andre Wibisono
123
183
0
22 Feb 2018
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
On the Theory of Variance Reduction for Stochastic Gradient Monte Carlo
Niladri S. Chatterji
Nicolas Flammarion
Yian Ma
Peter L. Bartlett
Michael I. Jordan
86
87
0
15 Feb 2018
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Stochastic Variance-Reduced Hamilton Monte Carlo Methods
Difan Zou
Pan Xu
Quanquan Gu
BDL
74
31
0
13 Feb 2018
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal
  Distributions using Simulated Tempering Langevin Monte Carlo
Beyond Log-concavity: Provable Guarantees for Sampling Multi-modal Distributions using Simulated Tempering Langevin Monte Carlo
Rong Ge
Holden Lee
Andrej Risteski
96
53
0
07 Oct 2017
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex
  Optimization
Global Convergence of Langevin Dynamics Based Algorithms for Nonconvex Optimization
Pan Xu
Jinghui Chen
Difan Zou
Quanquan Gu
90
205
0
20 Jul 2017
Underdamped Langevin MCMC: A non-asymptotic analysis
Underdamped Langevin MCMC: A non-asymptotic analysis
Xiang Cheng
Niladri S. Chatterji
Peter L. Bartlett
Michael I. Jordan
146
302
0
12 Jul 2017
Control Variates for Stochastic Gradient MCMC
Control Variates for Stochastic Gradient MCMC
Jack Baker
Paul Fearnhead
E. Fox
Christopher Nemeth
BDL
91
101
0
16 Jun 2017
Convergence of Langevin MCMC in KL-divergence
Convergence of Langevin MCMC in KL-divergence
Xiang Cheng
Peter L. Bartlett
85
194
0
25 May 2017
Quasi-stationary Monte Carlo and the ScaLE Algorithm
Quasi-stationary Monte Carlo and the ScaLE Algorithm
M. Pollock
Paul Fearnhead
A. M. Johansen
Gareth O. Roberts
98
18
0
12 Sep 2016
Previous
123