Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1710.06169
Cited By
Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation
17 October 2017
S. Tan
R. Caruana
Giles Hooker
Yin Lou
MLAU
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Distill-and-Compare: Auditing Black-Box Models Using Transparent Model Distillation"
35 / 35 papers shown
Title
Explaining Probabilistic Models with Distributional Values
Luca Franceschi
Michele Donini
Cédric Archambeau
Matthias Seeger
FAtt
42
2
0
15 Feb 2024
Active Globally Explainable Learning for Medical Images via Class Association Embedding and Cyclic Adversarial Generation
Ruitao Xie
Jingbang Chen
Limai Jiang
Ru Xiao
Yi-Lun Pan
Yunpeng Cai
GAN
MedIm
27
0
0
12 Jun 2023
Interpretable Differencing of Machine Learning Models
Swagatam Haldar
Diptikalyan Saha
Dennis L. Wei
Rahul Nair
Elizabeth M. Daly
18
1
0
10 Jun 2023
Explaining black box text modules in natural language with language models
Chandan Singh
Aliyah R. Hsu
Richard Antonello
Shailee Jain
Alexander G. Huth
Bin Yu
Jianfeng Gao
MILM
39
49
0
17 May 2023
How to address monotonicity for model risk management?
Dangxing Chen
Weicheng Ye
26
5
0
28 Apr 2023
Denoising diffusion algorithm for inverse design of microstructures with fine-tuned nonlinear material properties
Nikolaos N. Vlassis
WaiChing Sun
AI4CE
DiffM
54
47
0
24 Feb 2023
Monotonicity for AI ethics and society: An empirical study of the monotonic neural additive model in criminology, education, health care, and finance
Dangxing Chen
Luyao Zhang
SyDa
40
6
0
17 Jan 2023
Testing the effectiveness of saliency-based explainability in NLP using randomized survey-based experiments
Adel Rahimi
Shaurya Jain
FAtt
21
0
0
25 Nov 2022
Challenges in Applying Explainability Methods to Improve the Fairness of NLP Models
Esma Balkir
S. Kiritchenko
I. Nejadgholi
Kathleen C. Fraser
47
36
0
08 Jun 2022
The Road to Explainability is Paved with Bias: Measuring the Fairness of Explanations
Aparna Balagopalan
Haoran Zhang
Kimia Hamidieh
Thomas Hartvigsen
Frank Rudzicz
Marzyeh Ghassemi
53
78
0
06 May 2022
Towards Explainable Evaluation Metrics for Natural Language Generation
Christoph Leiter
Piyawat Lertvittayakumjorn
M. Fomicheva
Wei Zhao
Yang Gao
Steffen Eger
AAML
ELM
43
20
0
21 Mar 2022
The Who in XAI: How AI Background Shapes Perceptions of AI Explanations
Upol Ehsan
Samir Passi
Q. V. Liao
Larry Chan
I-Hsiang Lee
Michael J. Muller
Mark O. Riedl
34
86
0
28 Jul 2021
Survey: Leakage and Privacy at Inference Time
Marija Jegorova
Chaitanya Kaul
Charlie Mayor
Alison Q. OÑeil
Alexander Weir
Roderick Murray-Smith
Sotirios A. Tsaftaris
PILM
MIACV
33
71
0
04 Jul 2021
False perfection in machine prediction: Detecting and assessing circularity problems in machine learning
Michael Hagmann
Stefan Riezler
18
1
0
23 Jun 2021
Bias, Fairness, and Accountability with AI and ML Algorithms
Neng-Zhi Zhou
Zach Zhang
V. Nair
Harsh Singhal
Jie Chen
Agus Sudjianto
FaML
24
9
0
13 May 2021
From Human Explanation to Model Interpretability: A Framework Based on Weight of Evidence
David Alvarez-Melis
Harmanpreet Kaur
Hal Daumé
Hanna M. Wallach
Jennifer Wortman Vaughan
FAtt
56
29
0
27 Apr 2021
How can I choose an explainer? An Application-grounded Evaluation of Post-hoc Explanations
Sérgio Jesus
Catarina Belém
Vladimir Balayan
João Bento
Pedro Saleiro
P. Bizarro
João Gama
136
119
0
21 Jan 2021
Reflective-Net: Learning from Explanations
Johannes Schneider
Michalis Vlachos
FAtt
OffRL
LRM
57
18
0
27 Nov 2020
Towards Unifying Feature Attribution and Counterfactual Explanations: Different Means to the Same End
R. Mothilal
Divyat Mahajan
Chenhao Tan
Amit Sharma
FAtt
CML
32
100
0
10 Nov 2020
Counterfactual Explanations and Algorithmic Recourses for Machine Learning: A Review
Sahil Verma
Varich Boonsanong
Minh Hoang
Keegan E. Hines
John P. Dickerson
Chirag Shah
CML
31
164
0
20 Oct 2020
Principles and Practice of Explainable Machine Learning
Vaishak Belle
I. Papantonis
FaML
28
438
0
18 Sep 2020
The role of explainability in creating trustworthy artificial intelligence for health care: a comprehensive survey of the terminology, design choices, and evaluation strategies
A. Markus
J. Kors
P. Rijnbeek
33
454
0
31 Jul 2020
How Interpretable and Trustworthy are GAMs?
C. Chang
S. Tan
Benjamin J. Lengerich
Anna Goldenberg
R. Caruana
FAtt
22
77
0
11 Jun 2020
Neural Additive Models: Interpretable Machine Learning with Neural Nets
Rishabh Agarwal
Levi Melnick
Nicholas Frosst
Xuezhou Zhang
Ben Lengerich
R. Caruana
Geoffrey E. Hinton
46
407
0
29 Apr 2020
An Extension of LIME with Improvement of Interpretability and Fidelity
Sheng Shi
Yangzhou Du
Wei Fan
FAtt
18
8
0
26 Apr 2020
Revealing Neural Network Bias to Non-Experts Through Interactive Counterfactual Examples
Chelsea M. Myers
Evan Freed
Luis Fernando Laris Pardo
Anushay Furqan
S. Risi
Jichen Zhu
CML
18
12
0
07 Jan 2020
Fooling LIME and SHAP: Adversarial Attacks on Post hoc Explanation Methods
Dylan Slack
Sophie Hilgard
Emily Jia
Sameer Singh
Himabindu Lakkaraju
FAtt
AAML
MLAU
35
806
0
06 Nov 2019
Explainable Artificial Intelligence (XAI): Concepts, Taxonomies, Opportunities and Challenges toward Responsible AI
Alejandro Barredo Arrieta
Natalia Díaz Rodríguez
Javier Del Ser
Adrien Bennetot
Siham Tabik
...
S. Gil-Lopez
Daniel Molina
Richard Benjamins
Raja Chatila
Francisco Herrera
XAI
44
6,139
0
22 Oct 2019
Measuring Unfairness through Game-Theoretic Interpretability
Juliana Cesaro
Fabio Gagliardi Cozman
FAtt
16
13
0
12 Oct 2019
Explaining Machine Learning Classifiers through Diverse Counterfactual Explanations
R. Mothilal
Amit Sharma
Chenhao Tan
CML
34
997
0
19 May 2019
Unrestricted Permutation forces Extrapolation: Variable Importance Requires at least One More Model, or There Is No Free Variable Importance
Giles Hooker
L. Mentch
Siyu Zhou
44
154
0
01 May 2019
"Why Should You Trust My Explanation?" Understanding Uncertainty in LIME Explanations
Hui Fen Tan
Kuangyan Song
Yiming Sun
Yujia Zhang
Madeilene Udell
FAtt
11
19
0
29 Apr 2019
Copying Machine Learning Classifiers
Irene Unceta
Jordi Nin
O. Pujol
14
18
0
05 Mar 2019
Optimal Piecewise Local-Linear Approximations
Kartik Ahuja
W. Zame
M. Schaar
FAtt
27
1
0
27 Jun 2018
Fair prediction with disparate impact: A study of bias in recidivism prediction instruments
Alexandra Chouldechova
FaML
207
2,093
0
24 Oct 2016
1