Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1711.06664
Cited By
v1
v2
v3 (latest)
Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer
17 November 2017
David Madras
T. Pitassi
R. Zemel
FaML
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Predict Responsibly: Improving Fairness and Accuracy by Learning to Defer"
39 / 139 papers shown
Title
Doubting AI Predictions: Influence-Driven Second Opinion Recommendation
Maria De-Arteaga
Alexandra Chouldechova
Artur Dubrawski
60
4
0
29 Apr 2022
A Taxonomy of Human and ML Strengths in Decision-Making to Investigate Human-ML Complementarity
Charvi Rastogi
Liu Leqi
Kenneth Holstein
Hoda Heidari
137
12
0
22 Apr 2022
Human-Algorithm Collaboration: Achieving Complementarity and Avoiding Unfairness
Kate Donahue
Alexandra Chouldechova
K. Kenthapadi
FaML
FedML
109
54
0
17 Feb 2022
Uncalibrated Models Can Improve Human-AI Collaboration
Kailas Vodrahalli
Tobias Gerstenberg
James Zou
HAI
122
30
0
12 Feb 2022
Designing Closed Human-in-the-loop Deferral Pipelines
Vijay Keswani
Matthew Lease
K. Kenthapadi
OffRL
119
10
0
09 Feb 2022
Calibrated Learning to Defer with One-vs-All Classifiers
Rajeev Verma
Eric Nalisnick
75
45
0
08 Feb 2022
Improving Learning-to-Defer Algorithms Through Fine-Tuning
Naveen Raman
Michael Yee
58
9
0
18 Dec 2021
Role of Human-AI Interaction in Selective Prediction
Elizabeth Bondi
Raphael Köster
Hannah R. Sheahan
Martin Chadwick
Yoram Bachrach
taylan. cemgil
Ulrich Paquet
Krishnamurthy Dvijotham
80
35
0
13 Dec 2021
Teaching Humans When To Defer to a Classifier via Exemplars
Hussein Mozannar
Arvindmani Satyanarayan
David Sontag
85
43
0
22 Nov 2021
Algorithm Fairness in AI for Medicine and Healthcare
Richard J. Chen
Tiffany Y. Chen
Jana Lipkova
Judy J. Wang
Drew F. K. Williamson
Ming Y. Lu
S. Sahai
Faisal Mahmood
FaML
148
47
0
01 Oct 2021
Combining Human Predictions with Model Probabilities via Confusion Matrices and Calibration
Gavin Kerrigan
Padhraic Smyth
M. Steyvers
70
49
0
29 Sep 2021
A Sociotechnical View of Algorithmic Fairness
Mateusz Dolata
Stefan Feuerriegel
Gerhard Schwabe
FaML
76
101
0
27 Sep 2021
Learning-to-defer for sequential medical decision-making under uncertainty
Shalmali Joshi
S. Parbhoo
Finale Doshi-Velez
OffRL
100
7
0
13 Sep 2021
Style Pooling: Automatic Text Style Obfuscation for Improved Classification Fairness
Fatemehsadat Mireshghallah
Taylor Berg-Kirkpatrick
132
13
0
10 Sep 2021
Incorporating Uncertainty in Learning to Defer Algorithms for Safe Computer-Aided Diagnosis
Jessie Liu
B. Gallego
S. Barbieri
88
15
0
17 Aug 2021
Machine Learning with a Reject Option: A survey
Kilian Hendrickx
Lorenzo Perini
Dries Van der Plas
Wannes Meert
Jesse Davis
MU
96
129
0
23 Jul 2021
Diversity in Sociotechnical Machine Learning Systems
S. Fazelpour
Maria De-Arteaga
88
38
0
19 Jul 2021
Disaggregated Interventions to Reduce Inequality
Lucius E.J. Bynum
Joshua R. Loftus
Julia Stoyanovich
86
13
0
01 Jul 2021
Human-AI Collaboration with Bandit Feedback
Ruijiang Gao
M. Saar-Tsechansky
Maria De-Arteaga
Ligong Han
Min Kyung Lee
Matthew Lease
201
50
0
22 May 2021
CheXbreak: Misclassification Identification for Deep Learning Models Interpreting Chest X-rays
E. Chen
Andy Kim
R. Krishnan
J. Long
A. Ng
Pranav Rajpurkar
51
2
0
18 Mar 2021
Differentiable Learning Under Triage
Nastaran Okati
A. De
Manuel Gomez Rodriguez
112
64
0
16 Mar 2021
Towards Unbiased and Accurate Deferral to Multiple Experts
Vijay Keswani
Matthew Lease
K. Kenthapadi
FaML
70
70
0
25 Feb 2021
Classification with abstention but without disparities
Nicolas Schreuder
Evgenii Chzhen
FaML
101
24
0
24 Feb 2021
Leveraging Expert Consistency to Improve Algorithmic Decision Support
Maria De-Arteaga
Vincent Jeanselme
A. Dubrawski
Alexandra Chouldechova
84
22
0
24 Jan 2021
Preferential Mixture-of-Experts: Interpretable Models that Rely on Human Expertise as much as Possible
Melanie F. Pradier
Javier Zazo
S. Parbhoo
R. Perlis
Maurizio Zazzi
Finale Doshi-Velez
MoE
66
20
0
13 Jan 2021
Fairness in Machine Learning
L. Oneto
Silvia Chiappa
FaML
321
500
0
31 Dec 2020
Uncertainty as a Form of Transparency: Measuring, Communicating, and Using Uncertainty
Umang Bhatt
Javier Antorán
Yunfeng Zhang
Q. V. Liao
P. Sattigeri
...
L. Nachman
R. Chunara
Madhulika Srikumar
Adrian Weller
Alice Xiang
129
252
0
15 Nov 2020
Why have a Unified Predictive Uncertainty? Disentangling it using Deep Split Ensembles
U. Sarawgi
W. Zulfikar
Rishab Khincha
Pattie Maes
PER
UQCV
BDL
UD
50
7
0
25 Sep 2020
Improving Fairness in Criminal Justice Algorithmic Risk Assessments Using Conformal Prediction Sets
R. Berk
Arun K. Kuchibhotla
35
5
0
26 Aug 2020
Beyond Individual and Group Fairness
Pranjal Awasthi
Corinna Cortes
Yishay Mansour
M. Mohri
FaML
143
22
0
21 Aug 2020
A Bandit Model for Human-Machine Decision Making with Private Information and Opacity
Sebastian Bordt
U. V. Luxburg
62
8
0
09 Jul 2020
Unifying Model Explainability and Robustness via Machine-Checkable Concepts
Vedant Nanda
Till Speicher
John P. Dickerson
Krishna P. Gummadi
Muhammad Bilal Zafar
AAML
38
4
0
01 Jul 2020
Does the Whole Exceed its Parts? The Effect of AI Explanations on Complementary Team Performance
Gagan Bansal
Tongshuang Wu
Joyce Zhou
Raymond Fok
Besmira Nushi
Ece Kamar
Marco Tulio Ribeiro
Daniel S. Weld
138
607
0
26 Jun 2020
Consistent Estimators for Learning to Defer to an Expert
Hussein Mozannar
David Sontag
91
205
0
02 Jun 2020
Review of Mathematical frameworks for Fairness in Machine Learning
E. del Barrio
Paula Gordaliza
Jean-Michel Loubes
FaML
FedML
69
40
0
26 May 2020
On Consequentialism and Fairness
Dallas Card
Noah A. Smith
FaML
68
11
0
02 Jan 2020
Interpretations are useful: penalizing explanations to align neural networks with prior knowledge
Laura Rieger
Chandan Singh
W. James Murdoch
Bin Yu
FAtt
111
215
0
30 Sep 2019
An Embedding Framework for Consistent Polyhedral Surrogates
Jessie Finocchiaro
Rafael Frongillo
Bo Waggoner
59
30
0
17 Jul 2019
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
106
29
0
29 May 2019
Previous
1
2
3