Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1801.03437
Cited By
v1
v2 (latest)
Approximation beats concentration? An approximation view on inference with smooth radial kernels
10 January 2018
M. Belkin
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Approximation beats concentration? An approximation view on inference with smooth radial kernels"
50 / 63 papers shown
Title
A general technique for approximating high-dimensional empirical kernel matrices
Chiraag Kaushik
Justin Romberg
Vidya Muthukumar
54
0
0
05 Nov 2025
Bayesian Optimization over Bounded Domains with the Beta Product Kernel
Conference on Uncertainty in Artificial Intelligence (UAI), 2025
Huy Hoang Nguyen
Han Zhou
Matthew B. Blaschko
A. Tiulpin
125
0
0
19 Jun 2025
Turbocharging Gaussian Process Inference with Approximate Sketch-and-Project
Pratik Rathore
Zachary Frangella
Sachin Garg
Shaghayegh Fazliani
Michał Dereziński
Madeleine Udell
253
2
0
19 May 2025
Sparse Nonparametric Contextual Bandits
Hamish Flynn
Julia Olkhovskaya
Paul Rognon-Vael
291
0
0
20 Mar 2025
Koopman-Equivariant Gaussian Processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2025
Nicolas Hoischen
Max Beier
Armin Lederer
A. Capone
Roland Toth
Sandra Hirche
AI4TS
250
5
0
10 Feb 2025
Fast Second-Order Online Kernel Learning through Incremental Matrix Sketching and Decomposition
International Joint Conference on Artificial Intelligence (IJCAI), 2024
Dongxie Wen
Xiao Zhang
Zhewei Wei
Chenping Hou
Shuai Li
Weinan Zhang
169
0
0
15 Oct 2024
Have ASkotch: A Neat Solution for Large-scale Kernel Ridge Regression
Pratik Rathore
Zachary Frangella
Madeleine Udell
Michał Dereziński
Madeleine Udell
283
4
0
14 Jul 2024
Regularized KL-Divergence for Well-Defined Function-Space Variational Inference in Bayesian neural networks
Tristan Cinquin
Kushagra Pandey
UQCV
BDL
369
2
0
06 Jun 2024
Entrywise error bounds for low-rank approximations of kernel matrices
Neural Information Processing Systems (NeurIPS), 2024
Alexander Modell
234
0
0
23 May 2024
Tighter Confidence Bounds for Sequential Kernel Regression
H. Flynn
David Reeb
192
5
0
19 Mar 2024
A Bound on the Maximal Marginal Degrees of Freedom
Paul Dommel
260
1
0
20 Feb 2024
Generalization in Kernel Regression Under Realistic Assumptions
Daniel Barzilai
Ohad Shamir
315
21
0
26 Dec 2023
Regret Optimality of GP-UCB
Wenjia Wang
Xiaowei Zhang
Lu Zou
184
2
0
03 Dec 2023
Spatial Process Approximations: Assessing Their Necessity
Hao Zhang
81
2
0
06 Nov 2023
An Improved Uniform Convergence Bound with Fat-Shattering Dimension
Information Processing Letters (IPL), 2023
Roberto Colomboni
Emmanuel Esposito
Andrea Paudice
86
2
0
13 Jul 2023
Stochastic Nonlinear Control via Finite-dimensional Spectral Dynamic Embedding
IEEE Conference on Decision and Control (CDC), 2023
Zhaolin Ren
Tongzheng Ren
Haitong Ma
Na Li
Bo Dai
253
1
0
08 Apr 2023
Interpolation with the polynomial kernels
G. Elefante
W. Erb
Francesco Marchetti
E. Perracchione
D. Poggiali
G. Santin
159
1
0
15 Dec 2022
Symphony in the Latent Space: Provably Integrating High-dimensional Techniques with Non-linear Machine Learning Models
AAAI Conference on Artificial Intelligence (AAAI), 2022
Qiong Wu
Jian Li
Zhenming Liu
Jun Luo
Mihai Cucuringu
145
5
0
01 Dec 2022
Provably Reliable Large-Scale Sampling from Gaussian Processes
Anthony Stephenson
Robert Allison
Edward O. Pyzer-Knapp
173
2
0
15 Nov 2022
Optimal plug-in Gaussian processes for modelling derivatives
Zejian Liu
Meng Li
206
6
0
20 Oct 2022
A general approximation lower bound in
L
p
L^p
L
p
norm, with applications to feed-forward neural networks
Neural Information Processing Systems (NeurIPS), 2022
El Mehdi Achour
Armand Foucault
Sébastien Gerchinovitz
Franccois Malgouyres
187
10
0
09 Jun 2022
Rigorous data-driven computation of spectral properties of Koopman operators for dynamical systems
Matthew J. Colbrook
Alex Townsend
289
94
0
29 Nov 2021
Generalization Performance of Empirical Risk Minimization on Over-parameterized Deep ReLU Nets
IEEE Transactions on Information Theory (IEEE Trans. Inf. Theory), 2021
Shao-Bo Lin
Yao Wang
Ding-Xuan Zhou
ODL
284
5
0
28 Nov 2021
Harmless interpolation in regression and classification with structured features
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Andrew D. McRae
Santhosh Karnik
Mark A. Davenport
Vidya Muthukumar
286
13
0
09 Nov 2021
Dynamic Pricing and Demand Learning on a Large Network of Products: A PAC-Bayesian Approach
Bora Keskin
D. Simchi-Levi
Prem M. Talwai
203
1
0
01 Nov 2021
Learning to Forecast Dynamical Systems from Streaming Data
D. Giannakis
Amelia Henriksen
J. Tropp
Rachel A. Ward
AI4TS
177
20
0
20 Sep 2021
Learning Partial Differential Equations in Reproducing Kernel Hilbert Spaces
Journal of machine learning research (JMLR), 2021
George Stepaniants
206
22
0
26 Aug 2021
Neural Contextual Bandits without Regret
Parnian Kassraie
Andreas Krause
OffRL
241
42
0
07 Jul 2021
Weighted Gaussian Process Bandits for Non-stationary Environments
Yuntian Deng
Xingyu Zhou
Baekjin Kim
Ambuj Tewari
Abhishek Gupta
Ness B. Shroff
204
29
0
06 Jul 2021
Shallow Representation is Deep: Learning Uncertainty-aware and Worst-case Random Feature Dynamics
Diego Agudelo-España
Yassine Nemmour
Bernhard Schölkopf
Jia-Jie Zhu
OOD
BDL
86
0
0
24 Jun 2021
Fast Statistical Leverage Score Approximation in Kernel Ridge Regression
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Yifan Chen
Yun Yang
116
17
0
09 Mar 2021
Adversarially Robust Kernel Smoothing
International Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Jia-Jie Zhu
Christina Kouridi
Yassine Nemmour
Bernhard Schölkopf
202
8
0
16 Feb 2021
On Information Gain and Regret Bounds in Gaussian Process Bandits
International Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Sattar Vakili
Kia Khezeli
Victor Picheny
GP
423
154
0
15 Sep 2020
Kernel Interpolation of High Dimensional Scattered Data
SIAM Journal on Numerical Analysis (SINUM), 2020
Shao-Bo Lin
Xiangyu Chang
Xingping Sun
216
10
0
03 Sep 2020
Canonical thresholding for non-sparse high-dimensional linear regression
Annals of Statistics (Ann. Stat.), 2020
I. Silin
Jianqing Fan
130
6
0
24 Jul 2020
Spectral Bias and Task-Model Alignment Explain Generalization in Kernel Regression and Infinitely Wide Neural Networks
Nature Communications (Nat Commun), 2020
Abdulkadir Canatar
Blake Bordelon
Cengiz Pehlevan
499
219
0
23 Jun 2020
Interpolation and Learning with Scale Dependent Kernels
Nicolò Pagliana
Alessandro Rudi
Ernesto De Vito
Lorenzo Rosasco
287
8
0
17 Jun 2020
Scalable Thompson Sampling using Sparse Gaussian Process Models
Sattar Vakili
Henry B. Moss
A. Artemev
Vincent Dutordoir
Victor Picheny
360
35
0
09 Jun 2020
Lower bounds for invariant statistical models with applications to principal component analysis
Martin Wahl
127
6
0
14 May 2020
Analyzing the discrepancy principle for kernelized spectral filter learning algorithms
Journal of machine learning research (JMLR), 2020
Alain Celisse
Martin Wahl
132
19
0
17 Apr 2020
Kernel Autocovariance Operators of Stationary Processes: Estimation and Convergence
Journal of machine learning research (JMLR), 2020
Mattes Mollenhauer
Stefan Klus
Christof Schütte
P. Koltai
183
11
0
02 Apr 2020
Sample Complexity Result for Multi-category Classifiers of Bounded Variation
Khadija Musayeva
176
2
0
20 Mar 2020
Convergence Guarantees for Gaussian Process Means With Misspecified Likelihoods and Smoothness
Journal of machine learning research (JMLR), 2020
George Wynne
F. Briol
Mark Girolami
318
67
0
29 Jan 2020
Towards Understanding the Spectral Bias of Deep Learning
International Joint Conference on Artificial Intelligence (IJCAI), 2019
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
327
254
0
03 Dec 2019
On the perturbation series for eigenvalues and eigenprojections
Martin Wahl
102
10
0
18 Oct 2019
High-probability bounds for the reconstruction error of PCA
Statistics and Probability Letters (Stat. Probab. Lett.), 2019
Cassandra Milbradt
Martin Wahl
147
10
0
24 Sep 2019
On identifiability and consistency of the nugget in Gaussian spatial process models
Wenpin Tang
Lu Zhang
Sudipto Banerjee
384
42
0
15 Aug 2019
Benign Overfitting in Linear Regression
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
353
844
0
26 Jun 2019
Nyström landmark sampling and regularized Christoffel functions
Machine-mediated learning (ML), 2019
Michaël Fanuel
J. Schreurs
Johan A. K. Suykens
244
14
0
29 May 2019
Analyzing Data Selection Techniques with Tools from the Theory of Information Losses
Brandon Foggo
N. Yu
166
2
0
25 Feb 2019
1
2
Next