ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.00124
  4. Cited By
Rethinking the Smaller-Norm-Less-Informative Assumption in Channel
  Pruning of Convolution Layers

Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers

1 February 2018
Jianbo Ye
Xin Lu
Zhe-nan Lin
J. Z. Wang
ArXivPDFHTML

Papers citing "Rethinking the Smaller-Norm-Less-Informative Assumption in Channel Pruning of Convolution Layers"

50 / 193 papers shown
Title
Rethinking Weight Decay For Efficient Neural Network Pruning
Rethinking Weight Decay For Efficient Neural Network Pruning
Hugo Tessier
Vincent Gripon
Mathieu Léonardon
M. Arzel
T. Hannagan
David Bertrand
26
25
0
20 Nov 2020
LEAN: graph-based pruning for convolutional neural networks by
  extracting longest chains
LEAN: graph-based pruning for convolutional neural networks by extracting longest chains
R. Schoonhoven
A. Hendriksen
D. Pelt
K. Batenburg
3DPC
22
4
0
13 Nov 2020
Automated Model Compression by Jointly Applied Pruning and Quantization
Automated Model Compression by Jointly Applied Pruning and Quantization
Wenting Tang
Xingxing Wei
Bo-wen Li
MQ
8
7
0
12 Nov 2020
Deep Multimodal Fusion by Channel Exchanging
Deep Multimodal Fusion by Channel Exchanging
Yikai Wang
Wenbing Huang
Gang Hua
Tingyang Xu
Yu Rong
Junzhou Huang
19
237
0
10 Nov 2020
Effective Model Compression via Stage-wise Pruning
Effective Model Compression via Stage-wise Pruning
Mingyang Zhang
Xinyi Yu
Jingtao Rong
L. Ou
SyDa
21
1
0
10 Nov 2020
Channel Planting for Deep Neural Networks using Knowledge Distillation
Channel Planting for Deep Neural Networks using Knowledge Distillation
Kakeru Mitsuno
Yuichiro Nomura
Takio Kurita
28
2
0
04 Nov 2020
Filter Pruning using Hierarchical Group Sparse Regularization for Deep
  Convolutional Neural Networks
Filter Pruning using Hierarchical Group Sparse Regularization for Deep Convolutional Neural Networks
Kakeru Mitsuno
Takio Kurita
11
6
0
04 Nov 2020
Methods for Pruning Deep Neural Networks
Methods for Pruning Deep Neural Networks
S. Vadera
Salem Ameen
3DPC
21
122
0
31 Oct 2020
Greedy Optimization Provably Wins the Lottery: Logarithmic Number of
  Winning Tickets is Enough
Greedy Optimization Provably Wins the Lottery: Logarithmic Number of Winning Tickets is Enough
Mao Ye
Lemeng Wu
Qiang Liu
15
17
0
29 Oct 2020
Neuron Merging: Compensating for Pruned Neurons
Neuron Merging: Compensating for Pruned Neurons
Woojeong Kim
Suhyun Kim
Mincheol Park
Geonseok Jeon
17
32
0
25 Oct 2020
Adaptive Dense-to-Sparse Paradigm for Pruning Online Recommendation
  System with Non-Stationary Data
Adaptive Dense-to-Sparse Paradigm for Pruning Online Recommendation System with Non-Stationary Data
Mao Ye
Dhruv Choudhary
Jiecao Yu
Ellie Wen
Zeliang Chen
Jiyan Yang
Jongsoo Park
Qiang Liu
A. Kejariwal
13
9
0
16 Oct 2020
Comprehensive Online Network Pruning via Learnable Scaling Factors
Comprehensive Online Network Pruning via Learnable Scaling Factors
Muhammad Umair Haider
M. Taj
16
6
0
06 Oct 2020
Normalization Techniques in Training DNNs: Methodology, Analysis and
  Application
Normalization Techniques in Training DNNs: Methodology, Analysis and Application
Lei Huang
Jie Qin
Yi Zhou
Fan Zhu
Li Liu
Ling Shao
AI4CE
12
254
0
27 Sep 2020
A Gradient Flow Framework For Analyzing Network Pruning
A Gradient Flow Framework For Analyzing Network Pruning
Ekdeep Singh Lubana
Robert P. Dick
26
51
0
24 Sep 2020
Achieving Adversarial Robustness via Sparsity
Achieving Adversarial Robustness via Sparsity
Shu-Fan Wang
Ningyi Liao
Liyao Xiang
Nanyang Ye
Quanshi Zhang
AAML
6
14
0
11 Sep 2020
One Weight Bitwidth to Rule Them All
One Weight Bitwidth to Rule Them All
Ting-Wu Chin
P. Chuang
Vikas Chandra
Diana Marculescu
MQ
25
25
0
22 Aug 2020
Data-Independent Structured Pruning of Neural Networks via Coresets
Data-Independent Structured Pruning of Neural Networks via Coresets
Ben Mussay
Dan Feldman
Samson Zhou
Vladimir Braverman
Margarita Osadchy
21
25
0
19 Aug 2020
Towards Modality Transferable Visual Information Representation with
  Optimal Model Compression
Towards Modality Transferable Visual Information Representation with Optimal Model Compression
Rongqun Lin
Linwei Zhu
Shiqi Wang
Sam Kwong
27
2
0
13 Aug 2020
RARTS: An Efficient First-Order Relaxed Architecture Search Method
RARTS: An Efficient First-Order Relaxed Architecture Search Method
Fanghui Xue
Y. Qi
Jack Xin
21
1
0
10 Aug 2020
Neural Architecture Search as Sparse Supernet
Neural Architecture Search as Sparse Supernet
Yongpeng Wu
Aoming Liu
Zhiwu Huang
Siwei Zhang
Luc Van Gool
25
22
0
31 Jul 2020
Joslim: Joint Widths and Weights Optimization for Slimmable Neural
  Networks
Joslim: Joint Widths and Weights Optimization for Slimmable Neural Networks
Ting-Wu Chin
Ari S. Morcos
Diana Marculescu
24
10
0
23 Jul 2020
MTP: Multi-Task Pruning for Efficient Semantic Segmentation Networks
MTP: Multi-Task Pruning for Efficient Semantic Segmentation Networks
Xinghao Chen
Yiman Zhang
Yunhe Wang
VLM
19
15
0
16 Jul 2020
Operation-Aware Soft Channel Pruning using Differentiable Masks
Operation-Aware Soft Channel Pruning using Differentiable Masks
Minsoo Kang
Bohyung Han
AAML
33
138
0
08 Jul 2020
FracBits: Mixed Precision Quantization via Fractional Bit-Widths
FracBits: Mixed Precision Quantization via Fractional Bit-Widths
Linjie Yang
Qing Jin
MQ
14
74
0
04 Jul 2020
Channel Compression: Rethinking Information Redundancy among Channels in
  CNN Architecture
Channel Compression: Rethinking Information Redundancy among Channels in CNN Architecture
Jinhua Liang
Tao Zhang
Guoqing Feng
9
16
0
02 Jul 2020
Cogradient Descent for Bilinear Optimization
Cogradient Descent for Bilinear Optimization
Lian Zhuo
Baochang Zhang
Linlin Yang
Hanlin Chen
QiXiang Ye
David Doermann
G. Guo
Rongrong Ji
12
14
0
16 Jun 2020
Dynamic Model Pruning with Feedback
Dynamic Model Pruning with Feedback
Tao R. Lin
Sebastian U. Stich
Luis Barba
Daniil Dmitriev
Martin Jaggi
24
198
0
12 Jun 2020
A Framework for Neural Network Pruning Using Gibbs Distributions
A Framework for Neural Network Pruning Using Gibbs Distributions
Alex Labach
S. Valaee
9
5
0
08 Jun 2020
Pruning via Iterative Ranking of Sensitivity Statistics
Pruning via Iterative Ranking of Sensitivity Statistics
Stijn Verdenius
M. Stol
Patrick Forré
AAML
16
37
0
01 Jun 2020
CPOT: Channel Pruning via Optimal Transport
CPOT: Channel Pruning via Optimal Transport
Yucong Shen
Li Shen
Haozhi Huang
Xuan Wang
Wei Liu
OT
12
6
0
21 May 2020
A flexible, extensible software framework for model compression based on
  the LC algorithm
A flexible, extensible software framework for model compression based on the LC algorithm
Yerlan Idelbayev
Miguel Á. Carreira-Perpiñán
9
9
0
15 May 2020
Dependency Aware Filter Pruning
Dependency Aware Filter Pruning
Kai Zhao
Xinyu Zhang
Qi Han
Ming-Ming Cheng
8
3
0
06 May 2020
Out-of-the-box channel pruned networks
Out-of-the-box channel pruned networks
Ragav Venkatesan
Gurumurthy Swaminathan
Xiong Zhou
Anna Luo
20
0
0
30 Apr 2020
Rethinking Class-Discrimination Based CNN Channel Pruning
Rethinking Class-Discrimination Based CNN Channel Pruning
Yuchen Liu
D. Wentzlaff
S. Kung
16
10
0
29 Apr 2020
Convolution-Weight-Distribution Assumption: Rethinking the Criteria of
  Channel Pruning
Convolution-Weight-Distribution Assumption: Rethinking the Criteria of Channel Pruning
Zhongzhan Huang
Wenqi Shao
Xinjiang Wang
Liang Lin
Ping Luo
6
52
0
24 Apr 2020
Efficient Synthesis of Compact Deep Neural Networks
Efficient Synthesis of Compact Deep Neural Networks
Wenhan Xia
Hongxu Yin
N. Jha
26
3
0
18 Apr 2020
LadaBERT: Lightweight Adaptation of BERT through Hybrid Model
  Compression
LadaBERT: Lightweight Adaptation of BERT through Hybrid Model Compression
Yihuan Mao
Yujing Wang
Chufan Wu
Chen Zhang
Yang-Feng Wang
Yaming Yang
Quanlu Zhang
Yunhai Tong
Jing Bai
16
72
0
08 Apr 2020
Channel Pruning via Optimal Thresholding
Channel Pruning via Optimal Thresholding
Yun Ye
Ganmei You
Jong-Kae Fwu
Xia Zhu
Q. Yang
Yuan Zhu
14
12
0
10 Mar 2020
Gradual Channel Pruning while Training using Feature Relevance Scores
  for Convolutional Neural Networks
Gradual Channel Pruning while Training using Feature Relevance Scores for Convolutional Neural Networks
Sai Aparna Aketi
Sourjya Roy
A. Raghunathan
Kaushik Roy
8
22
0
23 Feb 2020
Knapsack Pruning with Inner Distillation
Knapsack Pruning with Inner Distillation
Y. Aflalo
Asaf Noy
Ming Lin
Itamar Friedman
Lihi Zelnik-Manor
3DPC
17
34
0
19 Feb 2020
Structured Sparsification with Joint Optimization of Group Convolution
  and Channel Shuffle
Structured Sparsification with Joint Optimization of Group Convolution and Channel Shuffle
Xinyu Zhang
Kai Zhao
Taihong Xiao
Mingg-Ming Cheng
Ming-Hsuan Yang
22
1
0
19 Feb 2020
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
Lookahead: A Far-Sighted Alternative of Magnitude-based Pruning
Sejun Park
Jaeho Lee
Sangwoo Mo
Jinwoo Shin
7
90
0
12 Feb 2020
Progressive Local Filter Pruning for Image Retrieval Acceleration
Progressive Local Filter Pruning for Image Retrieval Acceleration
Xiaodong Wang
Zhedong Zheng
Yang He
Fei Yan
Zhi-qiang Zeng
Yi Yang
27
34
0
24 Jan 2020
Filter Grafting for Deep Neural Networks
Filter Grafting for Deep Neural Networks
Fanxu Meng
Hao Cheng
Ke Li
Zhixin Xu
Rongrong Ji
Xing Sun
Guangming Lu
14
33
0
15 Jan 2020
Discrimination-aware Network Pruning for Deep Model Compression
Discrimination-aware Network Pruning for Deep Model Compression
Jing Liu
Bohan Zhuang
Zhuangwei Zhuang
Yong Guo
Junzhou Huang
Jin-Hui Zhu
Mingkui Tan
CVBM
19
118
0
04 Jan 2020
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
AtomNAS: Fine-Grained End-to-End Neural Architecture Search
Jieru Mei
Yingwei Li
Xiaochen Lian
Xiaojie Jin
Linjie Yang
Alan Yuille
Jianchao Yang
19
107
0
20 Dec 2019
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Dreaming to Distill: Data-free Knowledge Transfer via DeepInversion
Hongxu Yin
Pavlo Molchanov
Zhizhong Li
J. Álvarez
Arun Mallya
Derek Hoiem
N. Jha
Jan Kautz
26
551
0
18 Dec 2019
STEERAGE: Synthesis of Neural Networks Using Architecture Search and
  Grow-and-Prune Methods
STEERAGE: Synthesis of Neural Networks Using Architecture Search and Grow-and-Prune Methods
Shayan Hassantabar
Xiaoliang Dai
N. Jha
3DV
22
17
0
12 Dec 2019
Graph Pruning for Model Compression
Graph Pruning for Model Compression
Mingyang Zhang
Xinyi Yu
Jingtao Rong
L. Ou
GNN
30
9
0
22 Nov 2019
Provable Filter Pruning for Efficient Neural Networks
Provable Filter Pruning for Efficient Neural Networks
Lucas Liebenwein
Cenk Baykal
Harry Lang
Dan Feldman
Daniela Rus
VLM
3DPC
21
140
0
18 Nov 2019
Previous
1234
Next