ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.04034
  4. Cited By
Lipschitz-Margin Training: Scalable Certification of Perturbation
  Invariance for Deep Neural Networks

Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks

12 February 2018
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
    AAML
ArXivPDFHTML

Papers citing "Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks"

50 / 57 papers shown
Title
Hadamard product in deep learning: Introduction, Advances and Challenges
Hadamard product in deep learning: Introduction, Advances and Challenges
Grigorios G. Chrysos
Yongtao Wu
Razvan Pascanu
Philip Torr
V. Cevher
AAML
98
0
0
17 Apr 2025
Bridging the Theoretical Gap in Randomized Smoothing
Bridging the Theoretical Gap in Randomized Smoothing
Blaise Delattre
Paul Caillon
Quentin Barthélemy
Erwan Fagnou
Alexandre Allauzen
AAML
50
0
0
03 Apr 2025
Improved Scalable Lipschitz Bounds for Deep Neural Networks
Improved Scalable Lipschitz Bounds for Deep Neural Networks
U. Syed
Bin Hu
BDL
56
0
0
18 Mar 2025
On Space Folds of ReLU Neural Networks
On Space Folds of ReLU Neural Networks
Michal Lewandowski
Hamid Eghbalzadeh
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
MLT
73
1
0
17 Feb 2025
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
36
3
0
03 Jul 2024
Compositional Curvature Bounds for Deep Neural Networks
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
34
0
0
07 Jun 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
43
2
0
27 May 2024
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Yu-Guan Hsieh
James Thornton
Eugène Ndiaye
Michal Klein
Marco Cuturi
Pierre Ablin
MedIm
31
0
0
05 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
19
5
0
02 Feb 2024
How Smooth Is Attention?
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
1-Lipschitz Neural Networks are more expressive with N-Activations
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
P. Krishnamurthy
Farshad Khorrami
Siddharth Garg
26
5
0
27 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
13
11
0
29 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
21
9
0
02 Jun 2023
Steerable Equivariant Representation Learning
Steerable Equivariant Representation Learning
Sangnie Bhardwaj
Willie McClinton
Tongzhou Wang
Guillaume Lajoie
Chen Sun
Phillip Isola
Dilip Krishnan
OOD
LLMSV
26
5
0
22 Feb 2023
CQnet: convex-geometric interpretation and constraining neural-network
  trajectories
CQnet: convex-geometric interpretation and constraining neural-network trajectories
B. Peters
24
0
0
09 Feb 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers
  via Randomized Deletion
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
22
14
0
31 Jan 2023
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Yue Song
N. Sebe
Wei Wang
23
6
0
11 Dec 2022
Understanding the Vulnerability of Skeleton-based Human Activity
  Recognition via Black-box Attack
Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack
Yunfeng Diao
He-Nan Wang
Tianjia Shao
Yong-Liang Yang
Kun Zhou
David C. Hogg
Meng Wang
AAML
32
6
0
21 Nov 2022
Improved techniques for deterministic l2 robustness
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Dynamical systems' based neural networks
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
38
10
0
05 Oct 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz
  Networks
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
30
35
0
05 Aug 2022
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Yue Song
N. Sebe
Wei Wang
10
8
0
05 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via
  Distance-Awareness
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
19
15
0
13 Apr 2022
Toward Robust Spiking Neural Network Against Adversarial Perturbation
Toward Robust Spiking Neural Network Against Adversarial Perturbation
Ling Liang
Kaidi Xu
Xing Hu
Lei Deng
Yuan Xie
AAML
29
13
0
12 Apr 2022
Defending Black-box Skeleton-based Human Activity Classifiers
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
45
10
0
09 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Is the Rush to Machine Learning Jeopardizing Safety? Results of a Survey
Is the Rush to Machine Learning Jeopardizing Safety? Results of a Survey
M. Askarpour
Alan Wassyng
M. Lawford
R. Paige
Z. Diskin
15
0
0
29 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local
  Lipschitz Bounds
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
27
76
0
02 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural
  Networks
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
Orthogonal Graph Neural Networks
Orthogonal Graph Neural Networks
Kai Guo
Kaixiong Zhou
Xia Hu
Yu Li
Yi Chang
Xin Wang
41
34
0
23 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural
  Networks
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Certification of embedded systems based on Machine Learning: A survey
Certification of embedded systems based on Machine Learning: A survey
Guillaume Vidot
Christophe Gabreau
I. Ober
Iulian Ober
6
12
0
14 Jun 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation
  Perspective
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
16
52
0
11 May 2021
Analytical bounds on the local Lipschitz constants of ReLU networks
Analytical bounds on the local Lipschitz constants of ReLU networks
Trevor Avant
K. Morgansen
FAtt
14
12
0
29 Apr 2021
A case for new neural network smoothness constraints
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
A. Gretton
S. Mohamed
AAML
25
48
0
14 Dec 2020
Geometry-aware Instance-reweighted Adversarial Training
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
16
269
0
05 Oct 2020
The Lipschitz Constant of Self-Attention
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
8
134
0
08 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
8
45
0
28 May 2020
Training robust neural networks using Lipschitz bounds
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
14
156
0
06 May 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
14
396
0
26 Feb 2020
Indirect Adversarial Attacks via Poisoning Neighbors for Graph
  Convolutional Networks
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks
Tsubasa Takahashi
GNN
AAML
6
37
0
19 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
17
3
0
10 Feb 2020
Softmax-based Classification is k-means Clustering: Formal Proof,
  Consequences for Adversarial Attacks, and Improvement through Centroid Based
  Tailoring
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring
Sibylle Hess
W. Duivesteijn
D. Mocanu
12
12
0
07 Jan 2020
Fine-grained Synthesis of Unrestricted Adversarial Examples
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
30
13
0
20 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
8
6
0
20 Nov 2019
A Frobenius norm regularization method for convolutional kernels to
  avoid unstable gradient problem
A Frobenius norm regularization method for convolutional kernels to avoid unstable gradient problem
Pei-Chang Guo
13
5
0
25 Jul 2019
Scaleable input gradient regularization for adversarial robustness
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
8
77
0
27 May 2019
12
Next