Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04034
Cited By
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
12 February 2018
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks"
50 / 57 papers shown
Title
Hadamard product in deep learning: Introduction, Advances and Challenges
Grigorios G. Chrysos
Yongtao Wu
Razvan Pascanu
Philip Torr
V. Cevher
AAML
98
0
0
17 Apr 2025
Bridging the Theoretical Gap in Randomized Smoothing
Blaise Delattre
Paul Caillon
Quentin Barthélemy
Erwan Fagnou
Alexandre Allauzen
AAML
50
0
0
03 Apr 2025
Improved Scalable Lipschitz Bounds for Deep Neural Networks
U. Syed
Bin Hu
BDL
56
0
0
18 Mar 2025
On Space Folds of ReLU Neural Networks
Michal Lewandowski
Hamid Eghbalzadeh
Bernhard Heinzl
Raphael Pisoni
Bernhard A.Moser
MLT
73
1
0
17 Feb 2025
SPLITZ: Certifiable Robustness via Split Lipschitz Randomized Smoothing
Meiyu Zhong
Ravi Tandon
36
3
0
03 Jul 2024
Compositional Curvature Bounds for Deep Neural Networks
Taha Entesari
Sina Sharifi
Mahyar Fazlyab
AAML
34
0
0
07 Jun 2024
The Uncanny Valley: Exploring Adversarial Robustness from a Flatness Perspective
Nils Philipp Walter
Linara Adilova
Jilles Vreeken
Michael Kamp
AAML
43
2
0
27 May 2024
Careful with that Scalpel: Improving Gradient Surgery with an EMA
Yu-Guan Hsieh
James Thornton
Eugène Ndiaye
Michal Klein
Marco Cuturi
Pierre Ablin
MedIm
31
0
0
05 Feb 2024
Monotone, Bi-Lipschitz, and Polyak-Lojasiewicz Networks
Ruigang Wang
Krishnamurthy Dvijotham
I. Manchester
19
5
0
02 Feb 2024
How Smooth Is Attention?
Valérie Castin
Pierre Ablin
Gabriel Peyré
AAML
40
9
0
22 Dec 2023
1-Lipschitz Neural Networks are more expressive with N-Activations
Bernd Prach
Christoph H. Lampert
AAML
FAtt
24
0
0
10 Nov 2023
LipSim: A Provably Robust Perceptual Similarity Metric
Sara Ghazanfari
Alexandre Araujo
P. Krishnamurthy
Farshad Khorrami
Siddharth Garg
26
5
0
27 Oct 2023
Certified Robustness via Dynamic Margin Maximization and Improved Lipschitz Regularization
Mahyar Fazlyab
Taha Entesari
Aniket Roy
Ramalingam Chellappa
AAML
13
11
0
29 Sep 2023
Robust low-rank training via approximate orthonormal constraints
Dayana Savostianova
Emanuele Zangrando
Gianluca Ceruti
Francesco Tudisco
24
9
0
02 Jun 2023
Steerable Equivariant Representation Learning
Sangnie Bhardwaj
Willie McClinton
Tongzhou Wang
Guillaume Lajoie
Chen Sun
Phillip Isola
Dilip Krishnan
OOD
LLMSV
26
5
0
22 Feb 2023
CQnet: convex-geometric interpretation and constraining neural-network trajectories
B. Peters
24
0
0
09 Feb 2023
RS-Del: Edit Distance Robustness Certificates for Sequence Classifiers via Randomized Deletion
Zhuoqun Huang
Neil G. Marchant
Keane Lucas
Lujo Bauer
O. Ohrimenko
Benjamin I. P. Rubinstein
AAML
22
14
0
31 Jan 2023
Orthogonal SVD Covariance Conditioning and Latent Disentanglement
Yue Song
N. Sebe
Wei Wang
23
6
0
11 Dec 2022
Understanding the Vulnerability of Skeleton-based Human Activity Recognition via Black-box Attack
Yunfeng Diao
He-Nan Wang
Tianjia Shao
Yong-Liang Yang
Kun Zhou
David C. Hogg
Meng Wang
AAML
32
6
0
21 Nov 2022
Improved techniques for deterministic l2 robustness
Sahil Singla
S. Feizi
AAML
23
9
0
15 Nov 2022
Dynamical systems' based neural networks
E. Celledoni
Davide Murari
B. Owren
Carola-Bibiane Schönlieb
Ferdia Sherry
OOD
38
10
0
05 Oct 2022
Almost-Orthogonal Layers for Efficient General-Purpose Lipschitz Networks
Bernd Prach
Christoph H. Lampert
32
35
0
05 Aug 2022
Improving Covariance Conditioning of the SVD Meta-layer by Orthogonality
Yue Song
N. Sebe
Wei Wang
13
8
0
05 Jul 2022
On the Role of Generalization in Transferability of Adversarial Examples
Yilin Wang
Farzan Farnia
AAML
24
10
0
18 Jun 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Approximation of Lipschitz Functions using Deep Spline Neural Networks
Sebastian Neumayer
Alexis Goujon
Pakshal Bohra
M. Unser
19
15
0
13 Apr 2022
Toward Robust Spiking Neural Network Against Adversarial Perturbation
Ling Liang
Kaidi Xu
Xing Hu
Lei Deng
Yuan Xie
AAML
29
13
0
12 Apr 2022
Defending Black-box Skeleton-based Human Activity Classifiers
He-Nan Wang
Yunfeng Diao
Zichang Tan
G. Guo
AAML
45
10
0
09 Mar 2022
Adversarial robustness of sparse local Lipschitz predictors
Ramchandran Muthukumar
Jeremias Sulam
AAML
32
13
0
26 Feb 2022
Is the Rush to Machine Learning Jeopardizing Safety? Results of a Survey
M. Askarpour
Alan Wassyng
M. Lawford
R. Paige
Z. Diskin
15
0
0
29 Nov 2021
Training Certifiably Robust Neural Networks with Efficient Local Lipschitz Bounds
Yujia Huang
Huan Zhang
Yuanyuan Shi
J Zico Kolter
Anima Anandkumar
27
76
0
02 Nov 2021
Exploring Architectural Ingredients of Adversarially Robust Deep Neural Networks
Hanxun Huang
Yisen Wang
S. Erfani
Quanquan Gu
James Bailey
Xingjun Ma
AAML
TPM
44
100
0
07 Oct 2021
Orthogonal Graph Neural Networks
Kai Guo
Kaixiong Zhou
Xia Hu
Yu Li
Yi Chang
Xin Wang
41
34
0
23 Sep 2021
Existence, Stability and Scalability of Orthogonal Convolutional Neural Networks
E. M. Achour
Franccois Malgouyres
Franck Mamalet
16
20
0
12 Aug 2021
Certification of embedded systems based on Machine Learning: A survey
Guillaume Vidot
Christophe Gabreau
I. Ober
Iulian Ober
6
12
0
14 Jun 2021
Spectral Normalisation for Deep Reinforcement Learning: an Optimisation Perspective
Florin Gogianu
Tudor Berariu
Mihaela Rosca
Claudia Clopath
L. Buşoniu
Razvan Pascanu
16
52
0
11 May 2021
Analytical bounds on the local Lipschitz constants of ReLU networks
Trevor Avant
K. Morgansen
FAtt
14
12
0
29 Apr 2021
A case for new neural network smoothness constraints
Mihaela Rosca
T. Weber
A. Gretton
S. Mohamed
AAML
25
48
0
14 Dec 2020
Geometry-aware Instance-reweighted Adversarial Training
Jingfeng Zhang
Jianing Zhu
Gang Niu
Bo Han
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
22
269
0
05 Oct 2020
The Lipschitz Constant of Self-Attention
Hyunjik Kim
George Papamakarios
A. Mnih
11
134
0
08 Jun 2020
Calibrated Surrogate Losses for Adversarially Robust Classification
Han Bao
Clayton Scott
Masashi Sugiyama
14
45
0
28 May 2020
Training robust neural networks using Lipschitz bounds
Patricia Pauli
Anne Koch
J. Berberich
Paul Kohler
Frank Allgöwer
14
156
0
06 May 2020
Attacks Which Do Not Kill Training Make Adversarial Learning Stronger
Jingfeng Zhang
Xilie Xu
Bo Han
Gang Niu
Li-zhen Cui
Masashi Sugiyama
Mohan S. Kankanhalli
AAML
16
396
0
26 Feb 2020
Indirect Adversarial Attacks via Poisoning Neighbors for Graph Convolutional Networks
Tsubasa Takahashi
GNN
AAML
11
37
0
19 Feb 2020
Semialgebraic Optimization for Lipschitz Constants of ReLU Networks
Tong Chen
J. Lasserre
Victor Magron
Edouard Pauwels
19
3
0
10 Feb 2020
Softmax-based Classification is k-means Clustering: Formal Proof, Consequences for Adversarial Attacks, and Improvement through Centroid Based Tailoring
Sibylle Hess
W. Duivesteijn
D. Mocanu
14
12
0
07 Jan 2020
Fine-grained Synthesis of Unrestricted Adversarial Examples
Omid Poursaeed
Tianxing Jiang
Yordanos Goshu
Harry Yang
Serge J. Belongie
Ser-Nam Lim
AAML
30
13
0
20 Nov 2019
Where is the Bottleneck of Adversarial Learning with Unlabeled Data?
Jingfeng Zhang
Bo Han
Gang Niu
Tongliang Liu
Masashi Sugiyama
8
6
0
20 Nov 2019
A Frobenius norm regularization method for convolutional kernels to avoid unstable gradient problem
Pei-Chang Guo
15
5
0
25 Jul 2019
Scaleable input gradient regularization for adversarial robustness
Chris Finlay
Adam M. Oberman
AAML
8
77
0
27 May 2019
1
2
Next