Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.04034
Cited By
Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks
12 February 2018
Yusuke Tsuzuku
Issei Sato
Masashi Sugiyama
AAML
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Lipschitz-Margin Training: Scalable Certification of Perturbation Invariance for Deep Neural Networks"
7 / 57 papers shown
Title
Adversarial Learning in Statistical Classification: A Comprehensive Review of Defenses Against Attacks
David J. Miller
Zhen Xiang
G. Kesidis
AAML
6
35
0
12 Apr 2019
MMA Training: Direct Input Space Margin Maximization through Adversarial Training
G. Ding
Yash Sharma
Kry Yik-Chau Lui
Ruitong Huang
AAML
16
270
0
06 Dec 2018
Invertible Residual Networks
Jens Behrmann
Will Grathwohl
Ricky T. Q. Chen
D. Duvenaud
J. Jacobsen
UQCV
TPM
20
617
0
02 Nov 2018
On the Structural Sensitivity of Deep Convolutional Networks to the Directions of Fourier Basis Functions
Yusuke Tsuzuku
Issei Sato
AAML
14
62
0
11 Sep 2018
Motivating the Rules of the Game for Adversarial Example Research
Justin Gilmer
Ryan P. Adams
Ian Goodfellow
David G. Andersen
George E. Dahl
AAML
33
226
0
18 Jul 2018
Reluplex: An Efficient SMT Solver for Verifying Deep Neural Networks
Guy Katz
Clark W. Barrett
D. Dill
Kyle D. Julian
Mykel Kochenderfer
AAML
226
1,835
0
03 Feb 2017
Adversarial Machine Learning at Scale
Alexey Kurakin
Ian Goodfellow
Samy Bengio
AAML
261
3,109
0
04 Nov 2016
Previous
1
2