Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.08246
Cited By
Characterizing Implicit Bias in Terms of Optimization Geometry
22 February 2018
Suriya Gunasekar
Jason D. Lee
Daniel Soudry
Nathan Srebro
AI4CE
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Characterizing Implicit Bias in Terms of Optimization Geometry"
25 / 75 papers shown
Title
Directional Pruning of Deep Neural Networks
Shih-Kang Chao
Zhanyu Wang
Yue Xing
Guang Cheng
ODL
6
33
0
16 Jun 2020
Shape Matters: Understanding the Implicit Bias of the Noise Covariance
Jeff Z. HaoChen
Colin Wei
J. Lee
Tengyu Ma
18
93
0
15 Jun 2020
To Each Optimizer a Norm, To Each Norm its Generalization
Sharan Vaswani
Reza Babanezhad
Jose Gallego
Aaron Mishkin
Simon Lacoste-Julien
Nicolas Le Roux
13
8
0
11 Jun 2020
Classification vs regression in overparameterized regimes: Does the loss function matter?
Vidya Muthukumar
Adhyyan Narang
Vignesh Subramanian
M. Belkin
Daniel J. Hsu
A. Sahai
30
148
0
16 May 2020
Learning the gravitational force law and other analytic functions
Atish Agarwala
Abhimanyu Das
Rina Panigrahy
Qiuyi Zhang
MLT
6
0
0
15 May 2020
Implicit Regularization in Deep Learning May Not Be Explainable by Norms
Noam Razin
Nadav Cohen
11
155
0
13 May 2020
Implicit Bias of Gradient Descent for Wide Two-layer Neural Networks Trained with the Logistic Loss
Lénaïc Chizat
Francis R. Bach
MLT
16
327
0
11 Feb 2020
A Precise High-Dimensional Asymptotic Theory for Boosting and Minimum-
ℓ
1
\ell_1
ℓ
1
-Norm Interpolated Classifiers
Tengyuan Liang
Pragya Sur
25
68
0
05 Feb 2020
Towards Understanding the Spectral Bias of Deep Learning
Yuan Cao
Zhiying Fang
Yue Wu
Ding-Xuan Zhou
Quanquan Gu
16
214
0
03 Dec 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
11
116
0
03 Oct 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
8
353
0
13 Jun 2019
PowerSGD: Practical Low-Rank Gradient Compression for Distributed Optimization
Thijs Vogels
Sai Praneeth Karimireddy
Martin Jaggi
17
316
0
31 May 2019
Implicit Regularization in Deep Matrix Factorization
Sanjeev Arora
Nadav Cohen
Wei Hu
Yuping Luo
AI4CE
24
491
0
31 May 2019
Generalization bounds for deep convolutional neural networks
Philip M. Long
Hanie Sedghi
MLT
29
89
0
29 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
49
0
19 May 2019
A Selective Overview of Deep Learning
Jianqing Fan
Cong Ma
Yiqiao Zhong
BDL
VLM
25
135
0
10 Apr 2019
An Empirical Study of Large-Batch Stochastic Gradient Descent with Structured Covariance Noise
Yeming Wen
Kevin Luk
Maxime Gazeau
Guodong Zhang
Harris Chan
Jimmy Ba
ODL
15
22
0
21 Feb 2019
Fine-Grained Analysis of Optimization and Generalization for Overparameterized Two-Layer Neural Networks
Sanjeev Arora
S. Du
Wei Hu
Zhiyuan Li
Ruosong Wang
MLT
20
961
0
24 Jan 2019
Deep Geometric Prior for Surface Reconstruction
Francis Williams
T. Schneider
Claudio Silva
Denis Zorin
Joan Bruna
Daniele Panozzo
3DPC
14
189
0
27 Nov 2018
Regularization Matters: Generalization and Optimization of Neural Nets v.s. their Induced Kernel
Colin Wei
J. Lee
Qiang Liu
Tengyu Ma
16
243
0
12 Oct 2018
Diffusion Scattering Transforms on Graphs
Fernando Gama
Alejandro Ribeiro
Joan Bruna
GNN
26
100
0
22 Jun 2018
When Will Gradient Methods Converge to Max-margin Classifier under ReLU Models?
Tengyu Xu
Yi Zhou
Kaiyi Ji
Yingbin Liang
13
19
0
12 Jun 2018
Stochastic Gradient Descent on Separable Data: Exact Convergence with a Fixed Learning Rate
Mor Shpigel Nacson
Nathan Srebro
Daniel Soudry
FedML
MLT
11
97
0
05 Jun 2018
Stochastic Gradient/Mirror Descent: Minimax Optimality and Implicit Regularization
Navid Azizan
B. Hassibi
8
61
0
04 Jun 2018
On Large-Batch Training for Deep Learning: Generalization Gap and Sharp Minima
N. Keskar
Dheevatsa Mudigere
J. Nocedal
M. Smelyanskiy
P. T. P. Tang
ODL
273
2,886
0
15 Sep 2016
Previous
1
2