ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09127
  4. Cited By
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

International Conference on Learning Representations (ICLR), 2018
26 February 2018
C. Riquelme
George Tucker
Jasper Snoek
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling"

50 / 231 papers shown
Improving model calibration with accuracy versus uncertainty
  optimization
Improving model calibration with accuracy versus uncertainty optimizationNeural Information Processing Systems (NeurIPS), 2020
R. Krishnan
Omesh Tickoo
UQCV
488
194
0
14 Dec 2020
Encoding the latent posterior of Bayesian Neural Networks for
  uncertainty quantification
Encoding the latent posterior of Bayesian Neural Networks for uncertainty quantificationIEEE Transactions on Pattern Analysis and Machine Intelligence (TPAMI), 2020
Gianni Franchi
Andrei Bursuc
Emanuel Aldea
Séverine Dubuisson
Isabelle Bloch
BDLUQCV
320
32
0
04 Dec 2020
Neural Contextual Bandits with Deep Representation and Shallow
  Exploration
Neural Contextual Bandits with Deep Representation and Shallow ExplorationInternational Conference on Learning Representations (ICLR), 2020
Pan Xu
Zheng Wen
Handong Zhao
Quanquan Gu
OffRL
184
85
0
03 Dec 2020
ReproducedPapers.org: Openly teaching and structuring machine learning
  reproducibility
ReproducedPapers.org: Openly teaching and structuring machine learning reproducibilityInternational Workshop on Reproducible Research in Pattern Recognition (RRPR), 2020
Burak Yildiz
Hayley Hung
Jesse H. Krijthe
Cynthia C. S. Liem
Marco Loog
...
Annibale Panichella
P. Pawełczak
S. Picek
Mathijs de Weerdt
Jan van Gemert
SyDa
120
16
0
01 Dec 2020
Model-based Reinforcement Learning for Continuous Control with Posterior
  Sampling
Model-based Reinforcement Learning for Continuous Control with Posterior SamplingInternational Conference on Machine Learning (ICML), 2020
Ying Fan
Yifei Ming
294
22
0
20 Nov 2020
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and ChallengesInformation Fusion (Inf. Fusion), 2020
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Tianpeng Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDLUQCV
955
2,283
0
12 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Simon Mahns
Shengyang Sun
Roger C. Grosse
UQCV
177
27
0
06 Nov 2020
Dynamically Throttleable Neural Networks (TNN)
Dynamically Throttleable Neural Networks (TNN)
Hengyue Liu
Samyak Parajuli
Jesse Hostetler
S. Chai
B. Bhanu
154
4
0
01 Nov 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork InferenceInternational Conference on Machine Learning (ICML), 2020
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCVBDL
526
102
0
28 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCVBDL
315
33
0
06 Oct 2020
Neural Thompson Sampling
Neural Thompson SamplingInternational Conference on Learning Representations (ICLR), 2020
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
279
141
0
02 Oct 2020
Uncertainty Sets for Image Classifiers using Conformal Prediction
Uncertainty Sets for Image Classifiers using Conformal Prediction
Anastasios Nikolas Angelopoulos
Stephen Bates
Jitendra Malik
Sai Li
UQCV
672
415
0
29 Sep 2020
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
  using Reinforcement Learning
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution using Reinforcement LearningIntelligent Medicine (IM), 2020
R. Awasthi
K. K. Guliani
Saif Ahmad Khan
Aniket Vashishtha
M. S. Gill
Arshita Bhatt
A. Nagori
Aniket Gupta
Ponnurangam Kumaraguru
Tavpritesh Sethi
364
29
0
14 Sep 2020
$β$-Cores: Robust Large-Scale Bayesian Data Summarization in the
  Presence of Outliers
βββ-Cores: Robust Large-Scale Bayesian Data Summarization in the Presence of OutliersWeb Search and Data Mining (WSDM), 2020
Dionysis Manousakas
Cecilia Mascolo
210
2
0
31 Aug 2020
A Survey on Assessing the Generalization Envelope of Deep Neural
  Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
Alexandru Paul Condurache
UQCVAAMLAI4CE
218
8
0
21 Aug 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
296
17
0
17 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
195
44
0
03 Aug 2020
Greedy Bandits with Sampled Context
Greedy Bandits with Sampled Context
Dom Huh
40
0
0
27 Jul 2020
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
Théo Guénais
Dimitris Vamvourellis
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
UQCV
163
13
0
12 Jul 2020
Influence Diagram Bandits: Variational Thompson Sampling for Structured
  Bandit Problems
Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit ProblemsInternational Conference on Machine Learning (ICML), 2020
Tong Yu
Branislav Kveton
Zheng Wen
Ruiyi Zhang
Ole J. Mengshoel
TDI
203
2
0
09 Jul 2020
Recurrent Neural-Linear Posterior Sampling for Nonstationary Contextual
  Bandits
Recurrent Neural-Linear Posterior Sampling for Nonstationary Contextual BanditsNeural Computation (Neural Comput.), 2020
Aditya A. Ramesh
Paulo E. Rauber
Michelangelo Conserva
Jürgen Schmidhuber
137
0
0
09 Jul 2020
Hedging using reinforcement learning: Contextual $k$-Armed Bandit versus
  $Q$-learning
Hedging using reinforcement learning: Contextual kkk-Armed Bandit versus QQQ-learning
Loris Cannelli
Giuseppe Nuti
M. Sala
O. Szehr
OffRL
218
18
0
03 Jul 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCVBDLOOD
216
42
0
26 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDLUQCV
241
4
0
21 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCVBDL
831
518
0
17 Jun 2020
TS-UCB: Improving on Thompson Sampling With Little to No Additional
  Computation
TS-UCB: Improving on Thompson Sampling With Little to No Additional ComputationInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2020
Jackie Baek
Vivek F. Farias
188
9
0
11 Jun 2020
Gaussian Gated Linear Networks
Gaussian Gated Linear NetworksNeural Information Processing Systems (NeurIPS), 2020
David Budden
Adam H. Marblestone
Eren Sezener
Tor Lattimore
Greg Wayne
J. Veness
BDLAI4CE
211
12
0
10 Jun 2020
Meta-Learning Bandit Policies by Gradient Ascent
Meta-Learning Bandit Policies by Gradient Ascent
Branislav Kveton
Martin Mladenov
Chih-Wei Hsu
Manzil Zaheer
Csaba Szepesvári
Craig Boutilier
183
9
0
09 Jun 2020
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
  Gradient Descent and Thompson Sampling
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling
Qin Ding
Cho-Jui Hsieh
James Sharpnack
324
43
0
07 Jun 2020
A Linear Bandit for Seasonal Environments
A Linear Bandit for Seasonal Environments
Giuseppe Di Benedetto
Vito Bellini
Giovanni Zappella
166
7
0
28 Apr 2020
Deep Reinforcement Learning with Weighted Q-Learning
Deep Reinforcement Learning with Weighted Q-Learning
Andrea Cini
Carlo DÉramo
Jan Peters
Cesare Alippi
OffRL
172
10
0
20 Mar 2020
Self-Supervised Contextual Bandits in Computer Vision
Self-Supervised Contextual Bandits in Computer Vision
A. Deshmukh
Abhimanu Kumar
Levi Boyles
Denis Xavier Charles
Eren Manavoglu
Ürün Dogan
SSL
148
3
0
18 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy DataJournal of Computational Physics (JCP), 2020
Liu Yang
Xuhui Meng
George Karniadakis
PINN
363
978
0
13 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU NetworksInternational Conference on Machine Learning (ICML), 2020
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
367
327
0
24 Feb 2020
On Thompson Sampling with Langevin Algorithms
On Thompson Sampling with Langevin AlgorithmsInternational Conference on Machine Learning (ICML), 2020
Eric Mazumdar
Aldo Pacchiano
Yi-An Ma
Peter L. Bartlett
Sai Li
254
12
0
23 Feb 2020
Online Learning in Contextual Bandits using Gated Linear Networks
Online Learning in Contextual Bandits using Gated Linear NetworksNeural Information Processing Systems (NeurIPS), 2020
Eren Sezener
Marcus Hutter
David Budden
Jianan Wang
J. Veness
165
10
0
21 Feb 2020
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Stein Self-Repulsive Dynamics: Benefits From Past SamplesNeural Information Processing Systems (NeurIPS), 2020
Mao Ye
Zhaolin Ren
Qiang Liu
175
8
0
21 Feb 2020
Bayesian Meta-Prior Learning Using Empirical Bayes
Bayesian Meta-Prior Learning Using Empirical BayesManagement Sciences (MS), 2020
Sareh Nabi
Houssam Nassif
Joseph Hong
H. Mamani
Guido Imbens
343
22
0
04 Feb 2020
Machine learning based co-creative design framework
Machine learning based co-creative design framework
Brian Quanz
Wei-Ling Sun
Ajay A. Deshpande
Dhruv Shah
Jae-eun Park
HAI
98
12
0
23 Jan 2020
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDLOODUQCV
163
36
0
22 Jan 2020
Incentivising Exploration and Recommendations for Contextual Bandits
  with Payments
Incentivising Exploration and Recommendations for Contextual Bandits with Payments
Priyank Agrawal
Theja Tulabandhula
OffRL
137
5
0
22 Jan 2020
Continuous Meta-Learning without Tasks
Continuous Meta-Learning without TasksNeural Information Processing Systems (NeurIPS), 2019
James Harrison
Apoorva Sharma
Chelsea Finn
Marco Pavone
CLLOOD
297
80
0
18 Dec 2019
Benchmarking the Neural Linear Model for Regression
Benchmarking the Neural Linear Model for Regression
Sebastian W. Ober
C. Rasmussen
BDL
192
46
0
18 Dec 2019
Bayesian Linear Regression on Deep Representations
Bayesian Linear Regression on Deep Representations
J. Moberg
Lennart Svensson
Juliano Pinto
H. Wymeersch
BDLUQCV
84
2
0
14 Dec 2019
Individual predictions matter: Assessing the effect of data ordering in
  training fine-tuned CNNs for medical imaging
Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging
J. Zech
Jessica Zosa Forde
Michael L. Littman
203
6
0
08 Dec 2019
A Biologically Plausible Benchmark for Contextual Bandit Algorithms in
  Precision Oncology Using in vitro Data
A Biologically Plausible Benchmark for Contextual Bandit Algorithms in Precision Oncology Using in vitro Data
Niklas Rindtorff
Mingyu Lu
Nisarg A. Patel
Huahua Zheng
Alexander DÁmour
96
5
0
11 Nov 2019
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety
  Constraints
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety Constraints
Sam Daulton
Shaun Singh
Vashist Avadhanula
Drew Dimmery
E. Bakshy
147
14
0
02 Nov 2019
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local UncertaintyInternational Conference on Machine Learning (ICML), 2019
Zhendong Wang
Mingyuan Zhou
170
21
0
30 Oct 2019
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Old Dog Learns New Tricks: Randomized UCB for Bandit ProblemsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Sharan Vaswani
Abbas Mehrabian
A. Durand
Branislav Kveton
213
31
0
11 Oct 2019
AutoML for Contextual Bandits
AutoML for Contextual Bandits
Praneet Dutta
Man Kit Cheuk
Jonathan S Kim
M. Mascaro
OffRL
91
7
0
07 Sep 2019
Previous
12345
Next