ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09127
  4. Cited By
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

26 February 2018
C. Riquelme
George Tucker
Jasper Snoek
    BDL
ArXivPDFHTML

Papers citing "Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling"

50 / 227 papers shown
Title
A Review of Uncertainty Quantification in Deep Learning: Techniques,
  Applications and Challenges
A Review of Uncertainty Quantification in Deep Learning: Techniques, Applications and Challenges
Moloud Abdar
Farhad Pourpanah
Sadiq Hussain
Dana Rezazadegan
Li Liu
...
Xiaochun Cao
Abbas Khosravi
U. Acharya
V. Makarenkov
S. Nahavandi
BDL
UQCV
37
1,877
0
12 Nov 2020
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression
  Models Estimate Posterior Predictive Correlations?
Beyond Marginal Uncertainty: How Accurately can Bayesian Regression Models Estimate Posterior Predictive Correlations?
Chaoqi Wang
Shengyang Sun
Roger C. Grosse
UQCV
6
24
0
06 Nov 2020
Dynamically Throttleable Neural Networks (TNN)
Dynamically Throttleable Neural Networks (TNN)
Hengyue Liu
Samyak Parajuli
Jesse Hostetler
S. Chai
B. Bhanu
6
4
0
01 Nov 2020
Bayesian Deep Learning via Subnetwork Inference
Bayesian Deep Learning via Subnetwork Inference
Erik A. Daxberger
Eric T. Nalisnick
J. Allingham
Javier Antorán
José Miguel Hernández-Lobato
UQCV
BDL
23
83
0
28 Oct 2020
Empirical Frequentist Coverage of Deep Learning Uncertainty
  Quantification Procedures
Empirical Frequentist Coverage of Deep Learning Uncertainty Quantification Procedures
Benjamin Kompa
Jasper Snoek
Andrew L. Beam
UQCV
BDL
26
29
0
06 Oct 2020
Neural Thompson Sampling
Neural Thompson Sampling
Weitong Zhang
Dongruo Zhou
Lihong Li
Quanquan Gu
18
114
0
02 Oct 2020
Uncertainty Sets for Image Classifiers using Conformal Prediction
Uncertainty Sets for Image Classifiers using Conformal Prediction
Anastasios Nikolas Angelopoulos
Stephen Bates
Jitendra Malik
Michael I. Jordan
UQCV
17
315
0
29 Sep 2020
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution
  using Reinforcement Learning
VacSIM: Learning Effective Strategies for COVID-19 Vaccine Distribution using Reinforcement Learning
R. Awasthi
K. K. Guliani
Saif Ahmad Khan
Aniket Vashishtha
M. S. Gill
Arshita Bhatt
A. Nagori
Aniket Gupta
Ponnurangam Kumaraguru
Tavpritesh Sethi
24
24
0
14 Sep 2020
$β$-Cores: Robust Large-Scale Bayesian Data Summarization in the
  Presence of Outliers
βββ-Cores: Robust Large-Scale Bayesian Data Summarization in the Presence of Outliers
Dionysis Manousakas
Cecilia Mascolo
17
2
0
31 Aug 2020
A Survey on Assessing the Generalization Envelope of Deep Neural
  Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
A Survey on Assessing the Generalization Envelope of Deep Neural Networks: Predictive Uncertainty, Out-of-distribution and Adversarial Samples
Julia Lust
A. P. Condurache
UQCV
AAML
AI4CE
13
7
0
21 Aug 2020
Beyond Point Estimate: Inferring Ensemble Prediction Variation from
  Neuron Activation Strength in Recommender Systems
Beyond Point Estimate: Inferring Ensemble Prediction Variation from Neuron Activation Strength in Recommender Systems
Zhe Chen
Yuyan Wang
Dong Lin
D. Cheng
Lichan Hong
Ed H. Chi
Claire Cui
28
16
0
17 Aug 2020
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Deep Bayesian Bandits: Exploring in Online Personalized Recommendations
Dalin Guo
S. Ktena
Ferenc Huszár
Pranay K. Myana
Wenzhe Shi
Alykhan Tejani
OffRL
17
39
0
03 Aug 2020
Greedy Bandits with Sampled Context
Greedy Bandits with Sampled Context
Dom Huh
9
0
0
27 Jul 2020
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
BaCOUn: Bayesian Classifers with Out-of-Distribution Uncertainty
Théo Guénais
Dimitris Vamvourellis
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
UQCV
6
13
0
12 Jul 2020
Influence Diagram Bandits: Variational Thompson Sampling for Structured
  Bandit Problems
Influence Diagram Bandits: Variational Thompson Sampling for Structured Bandit Problems
Tong Yu
B. Kveton
Zheng Wen
Ruiyi Zhang
Ole J. Mengshoel
TDI
11
2
0
09 Jul 2020
Recurrent Neural-Linear Posterior Sampling for Nonstationary Contextual
  Bandits
Recurrent Neural-Linear Posterior Sampling for Nonstationary Contextual Bandits
Aditya A. Ramesh
Paulo E. Rauber
Michelangelo Conserva
Jürgen Schmidhuber
12
0
0
09 Jul 2020
Hedging using reinforcement learning: Contextual $k$-Armed Bandit versus
  $Q$-learning
Hedging using reinforcement learning: Contextual kkk-Armed Bandit versus QQQ-learning
Loris Cannelli
Giuseppe Nuti
M. Sala
O. Szehr
OffRL
16
9
0
03 Jul 2020
Unlabelled Data Improves Bayesian Uncertainty Calibration under
  Covariate Shift
Unlabelled Data Improves Bayesian Uncertainty Calibration under Covariate Shift
Alex J. Chan
Ahmed Alaa
Zhaozhi Qian
M. Schaar
UQCV
BDL
OOD
12
38
0
26 Jun 2020
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using
  Multi-Headed Auxiliary Networks
Uncertainty-Aware (UNA) Bases for Deep Bayesian Regression Using Multi-Headed Auxiliary Networks
Sujay Thakur
Cooper Lorsung
Yaniv Yacoby
Finale Doshi-Velez
Weiwei Pan
BDL
UQCV
25
4
0
21 Jun 2020
Simple and Principled Uncertainty Estimation with Deterministic Deep
  Learning via Distance Awareness
Simple and Principled Uncertainty Estimation with Deterministic Deep Learning via Distance Awareness
Jeremiah Zhe Liu
Zi Lin
Shreyas Padhy
Dustin Tran
Tania Bedrax-Weiss
Balaji Lakshminarayanan
UQCV
BDL
11
436
0
17 Jun 2020
TS-UCB: Improving on Thompson Sampling With Little to No Additional
  Computation
TS-UCB: Improving on Thompson Sampling With Little to No Additional Computation
Jackie Baek
Vivek F. Farias
22
9
0
11 Jun 2020
Gaussian Gated Linear Networks
Gaussian Gated Linear Networks
David Budden
Adam H. Marblestone
Eren Sezener
Tor Lattimore
Greg Wayne
J. Veness
BDL
AI4CE
14
12
0
10 Jun 2020
Meta-Learning Bandit Policies by Gradient Ascent
Meta-Learning Bandit Policies by Gradient Ascent
B. Kveton
Martin Mladenov
Chih-Wei Hsu
Manzil Zaheer
Csaba Szepesvári
Craig Boutilier
35
9
0
09 Jun 2020
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic
  Gradient Descent and Thompson Sampling
An Efficient Algorithm For Generalized Linear Bandit: Online Stochastic Gradient Descent and Thompson Sampling
Qin Ding
Cho-Jui Hsieh
James Sharpnack
17
37
0
07 Jun 2020
A Linear Bandit for Seasonal Environments
A Linear Bandit for Seasonal Environments
Giuseppe Di Benedetto
Vito Bellini
Giovanni Zappella
18
7
0
28 Apr 2020
Deep Reinforcement Learning with Weighted Q-Learning
Deep Reinforcement Learning with Weighted Q-Learning
Andrea Cini
Carlo DÉramo
Jan Peters
C. Alippi
OffRL
16
9
0
20 Mar 2020
Self-Supervised Contextual Bandits in Computer Vision
Self-Supervised Contextual Bandits in Computer Vision
A. Deshmukh
Abhimanu Kumar
Levi Boyles
Denis Xavier Charles
Eren Manavoglu
Ürün Dogan
SSL
23
3
0
18 Mar 2020
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and
  Inverse PDE Problems with Noisy Data
B-PINNs: Bayesian Physics-Informed Neural Networks for Forward and Inverse PDE Problems with Noisy Data
Liu Yang
Xuhui Meng
George Karniadakis
PINN
172
758
0
13 Mar 2020
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Being Bayesian, Even Just a Bit, Fixes Overconfidence in ReLU Networks
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDL
UQCV
25
277
0
24 Feb 2020
On Thompson Sampling with Langevin Algorithms
On Thompson Sampling with Langevin Algorithms
Eric Mazumdar
Aldo Pacchiano
Yi-An Ma
Peter L. Bartlett
Michael I. Jordan
6
11
0
23 Feb 2020
Online Learning in Contextual Bandits using Gated Linear Networks
Online Learning in Contextual Bandits using Gated Linear Networks
Eren Sezener
Marcus Hutter
David Budden
Jianan Wang
J. Veness
4
8
0
21 Feb 2020
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Stein Self-Repulsive Dynamics: Benefits From Past Samples
Mao Ye
Tongzheng Ren
Qiang Liu
18
8
0
21 Feb 2020
Bayesian Meta-Prior Learning Using Empirical Bayes
Bayesian Meta-Prior Learning Using Empirical Bayes
Sareh Nabi
Houssam Nassif
Joseph Hong
H. Mamani
Guido Imbens
14
18
0
04 Feb 2020
Machine learning based co-creative design framework
Machine learning based co-creative design framework
Brian Quanz
Wei-Ling Sun
Ajay A. Deshpande
Dhruv Shah
Jae-eun Park
HAI
9
9
0
23 Jan 2020
On Last-Layer Algorithms for Classification: Decoupling Representation
  from Uncertainty Estimation
On Last-Layer Algorithms for Classification: Decoupling Representation from Uncertainty Estimation
N. Brosse
C. Riquelme
Alice Martin
Sylvain Gelly
Eric Moulines
BDL
OOD
UQCV
11
33
0
22 Jan 2020
Incentivising Exploration and Recommendations for Contextual Bandits
  with Payments
Incentivising Exploration and Recommendations for Contextual Bandits with Payments
Priyank Agrawal
Theja Tulabandhula
OffRL
12
4
0
22 Jan 2020
Continuous Meta-Learning without Tasks
Continuous Meta-Learning without Tasks
James Harrison
Apoorva Sharma
Chelsea Finn
Marco Pavone
CLL
OOD
14
79
0
18 Dec 2019
Benchmarking the Neural Linear Model for Regression
Benchmarking the Neural Linear Model for Regression
Sebastian W. Ober
C. Rasmussen
BDL
11
41
0
18 Dec 2019
Bayesian Linear Regression on Deep Representations
Bayesian Linear Regression on Deep Representations
J. Moberg
Lennart Svensson
Juliano Pinto
H. Wymeersch
BDL
UQCV
11
2
0
14 Dec 2019
Individual predictions matter: Assessing the effect of data ordering in
  training fine-tuned CNNs for medical imaging
Individual predictions matter: Assessing the effect of data ordering in training fine-tuned CNNs for medical imaging
J. Zech
Jessica Zosa Forde
Michael L. Littman
13
5
0
08 Dec 2019
A Biologically Plausible Benchmark for Contextual Bandit Algorithms in
  Precision Oncology Using in vitro Data
A Biologically Plausible Benchmark for Contextual Bandit Algorithms in Precision Oncology Using in vitro Data
Niklas Rindtorff
Mingyu Lu
Nisarg A. Patel
Huahua Zheng
Alexander DÁmour
9
5
0
11 Nov 2019
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety
  Constraints
Thompson Sampling for Contextual Bandit Problems with Auxiliary Safety Constraints
Sam Daulton
Shaun Singh
Vashist Avadhanula
Drew Dimmery
E. Bakshy
13
13
0
02 Nov 2019
Thompson Sampling via Local Uncertainty
Thompson Sampling via Local Uncertainty
Zhendong Wang
Mingyuan Zhou
16
18
0
30 Oct 2019
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Old Dog Learns New Tricks: Randomized UCB for Bandit Problems
Sharan Vaswani
Abbas Mehrabian
A. Durand
B. Kveton
6
26
0
11 Oct 2019
AutoML for Contextual Bandits
AutoML for Contextual Bandits
Praneet Dutta
Man Kit Cheuk
Jonathan S Kim
M. Mascaro
OffRL
11
6
0
07 Sep 2019
PHYRE: A New Benchmark for Physical Reasoning
PHYRE: A New Benchmark for Physical Reasoning
A. Bakhtin
L. V. D. van der Maaten
Justin Johnson
Laura Gustafson
Ross B. Girshick
LRM
14
121
0
15 Aug 2019
Thompson Sampling with Approximate Inference
Thompson Sampling with Approximate Inference
My Phan
Yasin Abbasi-Yadkori
Justin Domke
8
28
0
14 Aug 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data Streams
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
17
9
0
12 Jul 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard E. Turner
BDL
UQCV
24
116
0
27 Jun 2019
Randomized Exploration in Generalized Linear Bandits
Randomized Exploration in Generalized Linear Bandits
B. Kveton
Manzil Zaheer
Csaba Szepesvári
Lihong Li
Mohammad Ghavamzadeh
Craig Boutilier
9
95
0
21 Jun 2019
Previous
12345
Next