ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09127
  4. Cited By
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

26 February 2018
C. Riquelme
George Tucker
Jasper Snoek
    BDL
ArXivPDFHTML

Papers citing "Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling"

27 / 227 papers shown
Title
Adaptive Temporal-Difference Learning for Policy Evaluation with
  Per-State Uncertainty Estimates
Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty Estimates
Hugo Penedones
C. Riquelme
Damien Vincent
Hartmut Maennel
Timothy A. Mann
André Barreto
Sylvain Gelly
Gergely Neu
OffRL
10
10
0
19 Jun 2019
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep
  Ensembles
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep Ensembles
Siddhartha Jain
Ge Liu
Jonas W. Mueller
David K Gifford
UQCV
8
60
0
18 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset Shift
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
24
1,652
0
06 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian Principles
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard E. Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDL
UQCV
41
240
0
06 Jun 2019
Learning Representations by Humans, for Humans
Learning Representations by Humans, for Humans
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCL
HAI
AI4CE
26
29
0
29 May 2019
Field-aware Calibration: A Simple and Empirically Strong Method for
  Reliable Probabilistic Predictions
Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic Predictions
Feiyang Pan
Xiang Ao
Pingzhong Tang
Min Lu
Dapeng Liu
Lei Xiao
Qing He
17
22
0
26 May 2019
The Scientific Method in the Science of Machine Learning
The Scientific Method in the Science of Machine Learning
Jessica Zosa Forde
Michela Paganini
24
35
0
24 Apr 2019
Empirical Bayes Regret Minimization
Empirical Bayes Regret Minimization
Chih-Wei Hsu
B. Kveton
Ofer Meshi
Martin Mladenov
Csaba Szepesvári
23
13
0
04 Apr 2019
Meta-Learning surrogate models for sequential decision making
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDL
OffRL
12
26
0
28 Mar 2019
Perturbed-History Exploration in Stochastic Linear Bandits
Perturbed-History Exploration in Stochastic Linear Bandits
B. Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
8
42
0
21 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
12
235
0
14 Mar 2019
Perturbed-History Exploration in Stochastic Multi-Armed Bandits
Perturbed-History Exploration in Stochastic Multi-Armed Bandits
B. Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
10
30
0
26 Feb 2019
Function Space Particle Optimization for Bayesian Neural Networks
Function Space Particle Optimization for Bayesian Neural Networks
Ziyu Wang
Tongzheng Ren
Jun Zhu
Bo Zhang
BDL
15
63
0
26 Feb 2019
Scalable Thompson Sampling via Optimal Transport
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
10
20
0
19 Feb 2019
Hybrid Models with Deep and Invertible Features
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDL
DRL
15
98
0
07 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian Processes
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLL
BDL
12
182
0
31 Jan 2019
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through
  Likelihood Matching
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through Likelihood Matching
Tom Zahavy
Shie Mannor
HAI
23
30
0
24 Jan 2019
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
19
68
0
18 Dec 2018
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
B. Kveton
Csaba Szepesvári
Sharan Vaswani
Zheng Wen
Mohammad Ghavamzadeh
Tor Lattimore
8
68
0
13 Nov 2018
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation
  Methods
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation Methods
Caroline Werther
M. Ferguson
K. Park
Cuixian Chen
Stephen J. Roberts
ODL
4
4
0
08 Nov 2018
contextual: Evaluating Contextual Multi-Armed Bandit Problems in R
contextual: Evaluating Contextual Multi-Armed Bandit Problems in R
Sayed Chhattan Shah
M. Kaptein
CML
14
8
0
06 Nov 2018
Successor Uncertainties: Exploration and Uncertainty in Temporal
  Difference Learning
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
49
49
0
15 Oct 2018
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Iñigo Urteaga
C. Wiggins
17
2
0
08 Aug 2018
VFunc: a Deep Generative Model for Functions
VFunc: a Deep Generative Model for Functions
Philip Bachman
Riashat Islam
Alessandro Sordoni
Zafarali Ahmed
VLM
BDL
29
8
0
11 Jul 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDL
UQCV
GP
8
504
0
04 Jul 2018
New Insights into Bootstrapping for Bandits
New Insights into Bootstrapping for Bandits
Sharan Vaswani
B. Kveton
Zheng Wen
Anup B. Rao
Mark W. Schmidt
Yasin Abbasi-Yadkori
15
18
0
24 May 2018
Dropout as a Bayesian Approximation: Representing Model Uncertainty in
  Deep Learning
Dropout as a Bayesian Approximation: Representing Model Uncertainty in Deep Learning
Y. Gal
Zoubin Ghahramani
UQCV
BDL
279
9,136
0
06 Jun 2015
Previous
12345