ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.09127
  4. Cited By
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep
  Networks for Thompson Sampling

Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling

International Conference on Learning Representations (ICLR), 2018
26 February 2018
C. Riquelme
George Tucker
Jasper Snoek
    BDL
ArXiv (abs)PDFHTML

Papers citing "Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling"

31 / 231 papers shown
PHYRE: A New Benchmark for Physical Reasoning
PHYRE: A New Benchmark for Physical ReasoningNeural Information Processing Systems (NeurIPS), 2019
A. Bakhtin
Laurens van der Maaten
Justin Johnson
Laura Gustafson
Ross B. Girshick
LRM
230
148
0
15 Aug 2019
Thompson Sampling with Approximate Inference
Thompson Sampling with Approximate Inference
My Phan
Yasin Abbasi-Yadkori
Justin Domke
153
29
0
14 Aug 2019
Vector Quantized Bayesian Neural Network Inference for Data Streams
Vector Quantized Bayesian Neural Network Inference for Data StreamsAAAI Conference on Artificial Intelligence (AAAI), 2019
Namuk Park
Taekyu Lee
Songkuk Kim
MQ
165
11
0
12 Jul 2019
Ín-Between' Uncertainty in Bayesian Neural Networks
Ín-Between' Uncertainty in Bayesian Neural Networks
Andrew Y. K. Foong
Yingzhen Li
José Miguel Hernández-Lobato
Richard Turner
BDLUQCV
195
130
0
27 Jun 2019
Randomized Exploration in Generalized Linear Bandits
Randomized Exploration in Generalized Linear BanditsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Branislav Kveton
Manzil Zaheer
Csaba Szepesvári
Lihong Li
Mohammad Ghavamzadeh
Craig Boutilier
309
104
0
21 Jun 2019
Adaptive Temporal-Difference Learning for Policy Evaluation with
  Per-State Uncertainty Estimates
Adaptive Temporal-Difference Learning for Policy Evaluation with Per-State Uncertainty EstimatesNeural Information Processing Systems (NeurIPS), 2019
Hugo Penedones
C. Riquelme
Damien Vincent
Hartmut Maennel
Timothy A. Mann
André Barreto
Sylvain Gelly
Gergely Neu
OffRL
173
10
0
19 Jun 2019
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep
  Ensembles
Maximizing Overall Diversity for Improved Uncertainty Estimates in Deep EnsemblesAAAI Conference on Artificial Intelligence (AAAI), 2019
Siddhartha Jain
Ge Liu
Jonas W. Mueller
David K Gifford
UQCV
178
66
0
18 Jun 2019
Can You Trust Your Model's Uncertainty? Evaluating Predictive
  Uncertainty Under Dataset Shift
Can You Trust Your Model's Uncertainty? Evaluating Predictive Uncertainty Under Dataset ShiftNeural Information Processing Systems (NeurIPS), 2019
Yaniv Ovadia
Emily Fertig
Jie Jessie Ren
Zachary Nado
D. Sculley
Sebastian Nowozin
Joshua V. Dillon
Balaji Lakshminarayanan
Jasper Snoek
UQCV
1.1K
1,919
0
06 Jun 2019
Practical Deep Learning with Bayesian Principles
Practical Deep Learning with Bayesian PrinciplesNeural Information Processing Systems (NeurIPS), 2019
Kazuki Osawa
S. Swaroop
Anirudh Jain
Runa Eschenhagen
Richard Turner
Rio Yokota
Mohammad Emtiyaz Khan
BDLUQCV
417
266
0
06 Jun 2019
Learning Representations by Humans, for Humans
Learning Representations by Humans, for HumansInternational Conference on Machine Learning (ICML), 2019
Sophie Hilgard
Nir Rosenfeld
M. Banaji
Jack Cao
David C. Parkes
OCLHAIAI4CE
205
29
0
29 May 2019
Field-aware Calibration: A Simple and Empirically Strong Method for
  Reliable Probabilistic Predictions
Field-aware Calibration: A Simple and Empirically Strong Method for Reliable Probabilistic PredictionsThe Web Conference (WWW), 2019
Feiyang Pan
Xiang Ao
Pingzhong Tang
Min Lu
Dapeng Liu
Lei Xiao
Qing He
268
27
0
26 May 2019
The Scientific Method in the Science of Machine Learning
The Scientific Method in the Science of Machine Learning
Jessica Zosa Forde
Michela Paganini
140
40
0
24 Apr 2019
Empirical Bayes Regret Minimization
Empirical Bayes Regret Minimization
Chih-Wei Hsu
Branislav Kveton
Ofer Meshi
Martin Mladenov
Csaba Szepesvári
210
15
0
04 Apr 2019
Meta-Learning surrogate models for sequential decision making
Meta-Learning surrogate models for sequential decision making
Alexandre Galashov
Jonathan Richard Schwarz
Hyunjik Kim
M. Garnelo
D. Saxton
Pushmeet Kohli
S. M. Ali Eslami
Yee Whye Teh
BDLOffRL
218
25
0
28 Mar 2019
Perturbed-History Exploration in Stochastic Linear Bandits
Perturbed-History Exploration in Stochastic Linear BanditsConference on Uncertainty in Artificial Intelligence (UAI), 2019
Branislav Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
230
47
0
21 Mar 2019
Functional Variational Bayesian Neural Networks
Functional Variational Bayesian Neural Networks
Shengyang Sun
Guodong Zhang
Jiaxin Shi
Roger C. Grosse
BDL
260
257
0
14 Mar 2019
Perturbed-History Exploration in Stochastic Multi-Armed Bandits
Perturbed-History Exploration in Stochastic Multi-Armed BanditsInternational Joint Conference on Artificial Intelligence (IJCAI), 2019
Branislav Kveton
Csaba Szepesvári
Mohammad Ghavamzadeh
Craig Boutilier
178
31
0
26 Feb 2019
Function Space Particle Optimization for Bayesian Neural Networks
Function Space Particle Optimization for Bayesian Neural NetworksInternational Conference on Learning Representations (ICLR), 2019
Ziyu Wang
Zhaolin Ren
Jun Zhu
Bo Zhang
BDL
190
68
0
26 Feb 2019
Scalable Thompson Sampling via Optimal Transport
Scalable Thompson Sampling via Optimal Transport
Ruiyi Zhang
Zheng Wen
Changyou Chen
Lawrence Carin
OT
213
20
0
19 Feb 2019
Hybrid Models with Deep and Invertible Features
Hybrid Models with Deep and Invertible Features
Eric T. Nalisnick
Akihiro Matsukawa
Yee Whye Teh
Dilan Görür
Balaji Lakshminarayanan
BDLDRL
310
101
0
07 Feb 2019
Functional Regularisation for Continual Learning with Gaussian Processes
Functional Regularisation for Continual Learning with Gaussian ProcessesInternational Conference on Learning Representations (ICLR), 2019
Michalis K. Titsias
Jonathan Richard Schwarz
A. G. Matthews
Razvan Pascanu
Yee Whye Teh
CLLBDL
517
205
0
31 Jan 2019
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through
  Likelihood Matching
Deep Neural Linear Bandits: Overcoming Catastrophic Forgetting through Likelihood Matching
Tom Zahavy
Shie Mannor
HAI
229
31
0
24 Jan 2019
Information-Directed Exploration for Deep Reinforcement Learning
Information-Directed Exploration for Deep Reinforcement Learning
Nikolay Nikolov
Johannes Kirschner
Felix Berkenkamp
Andreas Krause
300
77
0
18 Dec 2018
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Garbage In, Reward Out: Bootstrapping Exploration in Multi-Armed Bandits
Branislav Kveton
Csaba Szepesvári
Sharan Vaswani
Zheng Wen
Mohammad Ghavamzadeh
Tor Lattimore
348
73
0
13 Nov 2018
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation
  Methods
Practical Bayesian Learning of Neural Networks via Adaptive Optimisation Methods
Caroline Werther
M. Ferguson
K. Park
Cuixian Chen
Stephen J. Roberts
ODL
149
4
0
08 Nov 2018
contextual: Evaluating Contextual Multi-Armed Bandit Problems in R
contextual: Evaluating Contextual Multi-Armed Bandit Problems in R
Sayed Chhattan Shah
M. Kaptein
CML
165
10
0
06 Nov 2018
Successor Uncertainties: Exploration and Uncertainty in Temporal
  Difference Learning
Successor Uncertainties: Exploration and Uncertainty in Temporal Difference Learning
David Janz
Jiri Hron
Przemysław Mazur
Katja Hofmann
José Miguel Hernández-Lobato
Sebastian Tschiatschek
336
54
0
15 Oct 2018
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Nonparametric Gaussian Mixture Models for the Multi-Armed Bandit
Iñigo Urteaga
C. Wiggins
315
3
0
08 Aug 2018
VFunc: a Deep Generative Model for Functions
VFunc: a Deep Generative Model for Functions
Philip Bachman
Riashat Islam
Alessandro Sordoni
Zafarali Ahmed
VLMBDL
139
8
0
11 Jul 2018
Neural Processes
Neural Processes
M. Garnelo
Jonathan Richard Schwarz
Dan Rosenbaum
Fabio Viola
Danilo Jimenez Rezende
S. M. Ali Eslami
Yee Whye Teh
BDLUQCVGP
265
565
0
04 Jul 2018
New Insights into Bootstrapping for Bandits
New Insights into Bootstrapping for Bandits
Sharan Vaswani
Branislav Kveton
Zheng Wen
Anup B. Rao
Mark Schmidt
Yasin Abbasi-Yadkori
233
18
0
24 May 2018
Previous
12345