Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1802.09127
Cited By
Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling
26 February 2018
C. Riquelme
George Tucker
Jasper Snoek
BDL
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Deep Bayesian Bandits Showdown: An Empirical Comparison of Bayesian Deep Networks for Thompson Sampling"
50 / 227 papers shown
Title
Diffusion Models for Black-Box Optimization
S. Krishnamoorthy
Satvik Mashkaria
Aditya Grover
DiffM
26
51
0
12 Jun 2023
Representation-Driven Reinforcement Learning
Ofir Nabati
Guy Tennenholtz
Shie Mannor
13
1
0
31 May 2023
Deep Stochastic Processes via Functional Markov Transition Operators
Jin Xu
Emilien Dupont
Kaspar Martens
Tom Rainforth
Yee Whye Teh
25
4
0
24 May 2023
Memory Efficient Neural Processes via Constant Memory Attention Block
Leo Feng
Frederick Tung
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
23
5
0
23 May 2023
Learning Personalized Page Content Ranking Using Customer Representation
Xin Shen
Yan Zhao
Sujan Perera
Yujia Liu
Jinyun Yan
Mitchell Goodman
BDL
26
8
0
09 May 2023
Neural Exploitation and Exploration of Contextual Bandits
Yikun Ban
Yuchen Yan
A. Banerjee
Jingrui He
34
8
0
05 May 2023
Expertise Trees Resolve Knowledge Limitations in Collective Decision-Making
Axel Abels
Tom Lenaerts
V. Trianni
Ann Nowé
19
1
0
02 May 2023
Posterior Sampling for Deep Reinforcement Learning
Remo Sasso
Michelangelo Conserva
Paulo E. Rauber
OffRL
BDL
35
6
0
30 Apr 2023
Towards Reliable Uncertainty Quantification via Deep Ensembles in Multi-output Regression Task
Sunwoong Yang
K. Yee
UQCV
32
5
0
28 Mar 2023
Adaptive Endpointing with Deep Contextual Multi-armed Bandits
Do June Min
A. Stolcke
A. Raju
Colin Vaz
Di He
Venkatesh Ravichandran
V. Trinh
OffRL
27
0
0
23 Mar 2023
Energy Regularized RNNs for Solving Non-Stationary Bandit Problems
Michael Rotman
Lior Wolf
11
1
0
12 Mar 2023
Variational Boosted Soft Trees
Tristan Cinquin
Tammo Rukat
Philipp Schmidt
Martin Wistuba
Artur Bekasov
BDL
UQCV
16
0
0
21 Feb 2023
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution Shifts
H. Bui
Anqi Liu
OOD
UQCV
13
6
0
13 Feb 2023
Multiplier Bootstrap-based Exploration
Runzhe Wan
Haoyu Wei
B. Kveton
R. Song
16
2
0
03 Feb 2023
Thompson Sampling with Diffusion Generative Prior
Yu-Guan Hsieh
S. Kasiviswanathan
B. Kveton
Patrick Blobaum
DiffM
22
7
0
12 Jan 2023
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage Guidelines
Michael Weiss
Paolo Tonella
BDL
UQCV
6
11
0
14 Dec 2022
Latent Bottlenecked Attentive Neural Processes
Leo Feng
Hossein Hajimirsadeghi
Yoshua Bengio
Mohamed Osama Ahmed
BDL
19
19
0
15 Nov 2022
History-Based, Bayesian, Closure for Stochastic Parameterization: Application to Lorenz '96
Mohamed Aziz Bhouri
Pierre Gentine
AI4TS
AI4CE
20
6
0
26 Oct 2022
Scalable Representation Learning in Linear Contextual Bandits with Constant Regret Guarantees
Andrea Tirinzoni
Matteo Papini
Ahmed Touati
A. Lazaric
Matteo Pirotta
26
4
0
24 Oct 2022
Maximum entropy exploration in contextual bandits with neural networks and energy based models
A. Elwood
Marco Leonardi
A. Mohamed
A. Rozza
16
1
0
12 Oct 2022
The Neural Process Family: Survey, Applications and Perspectives
Saurav Jha
Dong Gong
Xuesong Wang
Richard E. Turner
L. Yao
BDL
73
24
0
01 Sep 2022
BayesCap: Bayesian Identity Cap for Calibrated Uncertainty in Frozen Neural Networks
Uddeshya Upadhyay
Shyamgopal Karthik
Yanbei Chen
Massimiliano Mancini
Zeynep Akata
UQCV
BDL
23
22
0
14 Jul 2022
Transformer Neural Processes: Uncertainty-Aware Meta Learning Via Sequence Modeling
Tung Nguyen
Aditya Grover
BDL
UQCV
19
99
0
09 Jul 2022
Bayesian approaches for Quantifying Clinicians' Variability in Medical Image Quantification
Jaeik Jeon
Yeonggul Jang
Youngtaek Hong
H. Shim
Sekeun Kim
27
1
0
05 Jul 2022
SLOVA: Uncertainty Estimation Using Single Label One-Vs-All Classifier
Bartosz Wójcik
J. Grela
Marek Śmieja
Krzysztof Misztal
Jacek Tabor
UQCV
31
4
0
28 Jun 2022
POEM: Out-of-Distribution Detection with Posterior Sampling
Yifei Ming
Ying Fan
Yixuan Li
OODD
27
113
0
28 Jun 2022
Langevin Monte Carlo for Contextual Bandits
Pan Xu
Hongkai Zheng
Eric Mazumdar
Kamyar Azizzadenesheli
Anima Anandkumar
8
28
0
22 Jun 2022
Generative Pretraining for Black-Box Optimization
S. Krishnamoorthy
Satvik Mashkaria
Aditya Grover
OffRL
AI4CE
45
26
0
22 Jun 2022
A Contextual Combinatorial Semi-Bandit Approach to Network Bottleneck Identification
F. Hoseini
Niklas Åkerblom
M. Chehreghani
28
3
0
16 Jun 2022
How to talk so AI will learn: Instructions, descriptions, and autonomy
T. Sumers
Robert D. Hawkins
Mark K. Ho
Thomas L. Griffiths
Dylan Hadfield-Menell
LM&Ro
28
20
0
16 Jun 2022
Excess risk analysis for epistemic uncertainty with application to variational inference
Futoshi Futami
Tomoharu Iwata
N. Ueda
Issei Sato
Masashi Sugiyama
UQCV
23
1
0
02 Jun 2022
Provably and Practically Efficient Neural Contextual Bandits
Sudeep Salgia
Sattar Vakili
Qing Zhao
10
8
0
31 May 2022
Pervasive Machine Learning for Smart Radio Environments Enabled by Reconfigurable Intelligent Surfaces
G. C. Alexandropoulos
Kyriakos Stylianopoulos
Chongwen Huang
Chau Yuen
M. Bennis
Mérouane Debbah
23
87
0
08 May 2022
A Deep Bayesian Bandits Approach for Anticancer Therapy: Exploration via Functional Prior
Mingyu Lu
Yifang Chen
Su-In Lee
13
0
0
05 May 2022
A Simple Approach to Improve Single-Model Deep Uncertainty via Distance-Awareness
J. Liu
Shreyas Padhy
Jie Jessie Ren
Zi Lin
Yeming Wen
Ghassen Jerfel
Zachary Nado
Jasper Snoek
Dustin Tran
Balaji Lakshminarayanan
UQCV
BDL
16
48
0
01 May 2022
Deep Ensemble as a Gaussian Process Approximate Posterior
Zhijie Deng
Feng Zhou
Jianfei Chen
Guoqiang Wu
Jun Zhu
UQCV
14
5
0
30 Apr 2022
Reward-Biased Maximum Likelihood Estimation for Neural Contextual Bandits
Yu-Heng Hung
Ping-Chun Hsieh
8
2
0
08 Mar 2022
Scalable Uncertainty Quantification for Deep Operator Networks using Randomized Priors
Yibo Yang
Georgios Kissas
P. Perdikaris
BDL
UQCV
20
40
0
06 Mar 2022
Residual Bootstrap Exploration for Stochastic Linear Bandit
Shuang Wu
ChiHua Wang
Yuantong Li
Guang Cheng
6
8
0
23 Feb 2022
Fast online inference for nonlinear contextual bandit based on Generative Adversarial Network
Yun-Da Tsai
Shou-De Lin
38
5
0
17 Feb 2022
Designing Closed Human-in-the-loop Deferral Pipelines
Vijay Keswani
Matthew Lease
K. Kenthapadi
OffRL
8
10
0
09 Feb 2022
Maximum Likelihood Uncertainty Estimation: Robustness to Outliers
Deebul Nair
Nico Hochgeschwender
Miguel A. Olivares-Mendez
OOD
22
7
0
03 Feb 2022
Evaluating Deep Vs. Wide & Deep Learners As Contextual Bandits For Personalized Email Promo Recommendations
A. A. Kocherzhenko
Nirmal Sobha Kartha
Tengfei Li
Hsin-Yi Shih
Shih
Marco Mandic
Mike Fuller
Arshak Navruzyan
26
0
0
31 Jan 2022
Neural Collaborative Filtering Bandits via Meta Learning
Yikun Ban
Yunzhe Qi
Tianxin Wei
Jingrui He
OffRL
26
9
0
31 Jan 2022
Optimal Regret Is Achievable with Bounded Approximate Inference Error: An Enhanced Bayesian Upper Confidence Bound Framework
Ziyi Huang
H. Lam
A. Meisami
Haofeng Zhang
34
4
0
31 Jan 2022
Top-K Ranking Deep Contextual Bandits for Information Selection Systems
Jade Freeman
Michael Rawson
16
2
0
28 Jan 2022
Top
K
K
K
Ranking for Multi-Armed Bandit with Noisy Evaluations
Evrard Garcelon
Vashist Avadhanula
A. Lazaric
and Matteo Pirotta
14
4
0
13 Dec 2021
Contextual Exploration Using a Linear Approximation Method Based on Satisficing
Akane Minami
Yuki Kono
Tatsuji Takahashi
13
0
0
13 Dec 2021
Contextual Bandit Applications in Customer Support Bot
Sandra Sajeev
Jade Huang
Nikos Karampatziakis
Matthew Hall
Sebastian Kochman
Weizhu Chen
22
10
0
06 Dec 2021
Neural Pseudo-Label Optimism for the Bank Loan Problem
Aldo Pacchiano
Shaun Singh
Edward Chou
Alexander C. Berg
Jakob N. Foerster
11
7
0
03 Dec 2021
Previous
1
2
3
4
5
Next