ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1802.10501
  4. Cited By
Predictive Uncertainty Estimation via Prior Networks
v1v2v3v4 (latest)

Predictive Uncertainty Estimation via Prior Networks

Neural Information Processing Systems (NeurIPS), 2018
28 February 2018
A. Malinin
Mark Gales
    UDBDLEDLUQCVPER
ArXiv (abs)PDFHTML

Papers citing "Predictive Uncertainty Estimation via Prior Networks"

50 / 576 papers shown
Monte Carlo DropBlock for Modelling Uncertainty in Object Detection
Monte Carlo DropBlock for Modelling Uncertainty in Object DetectionPattern Recognition (Pattern Recogn.), 2021
K. Deepshikha
Sai Harsha Yelleni
P. K. Srijith
C.Krishna Mohan
BDLUQCV
159
107
0
08 Aug 2021
Triggering Failures: Out-Of-Distribution detection by learning from
  local adversarial attacks in Semantic Segmentation
Triggering Failures: Out-Of-Distribution detection by learning from local adversarial attacks in Semantic Segmentation
Victor Besnier
Andrei Bursuc
David Picard
Alexandre Briot
UQCV
238
54
0
03 Aug 2021
Robust Semantic Segmentation with Superpixel-Mix
Robust Semantic Segmentation with Superpixel-Mix
Gianni Franchi
Nacim Belkhir
Mai Lan Ha
Yufei Hu
Andrei Bursuc
V. Blanz
Angela Yao
UQCV
220
24
0
02 Aug 2021
Standardized Max Logits: A Simple yet Effective Approach for Identifying
  Unexpected Road Obstacles in Urban-Scene Segmentation
Standardized Max Logits: A Simple yet Effective Approach for Identifying Unexpected Road Obstacles in Urban-Scene SegmentationIEEE International Conference on Computer Vision (ICCV), 2021
Sanghun Jung
Jungsoo Lee
Daehoon Gwak
Sungha Choi
Jaegul Choo
259
113
0
23 Jul 2021
Evidential Deep Learning for Open Set Action Recognition
Evidential Deep Learning for Open Set Action RecognitionIEEE International Conference on Computer Vision (ICCV), 2021
Wentao Bao
Qi Yu
Yu Kong
CMLEDL
358
186
0
21 Jul 2021
Epistemic Neural Networks
Epistemic Neural NetworksNeural Information Processing Systems (NeurIPS), 2021
Ian Osband
Zheng Wen
M. Asghari
Vikranth Dwaracherla
M. Ibrahimi
Xiyuan Lu
Benjamin Van Roy
UQCVBDL
775
124
0
19 Jul 2021
Shifts: A Dataset of Real Distributional Shift Across Multiple
  Large-Scale Tasks
Shifts: A Dataset of Real Distributional Shift Across Multiple Large-Scale Tasks
A. Malinin
Neil Band
Ganshin
Alexander
German Chesnokov
...
Roginskiy
Denis
Mariya Shmatova
Panos Tigas
Boris Yangel
UQCVOOD
480
147
0
15 Jul 2021
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object
  Detectors
Gradient-Based Quantification of Epistemic Uncertainty for Deep Object DetectorsIEEE Workshop/Winter Conference on Applications of Computer Vision (WACV), 2021
Tobias Riedlinger
Matthias Rottmann
Marius Schubert
Hanno Gottschalk
BDLUQCV
289
15
0
09 Jul 2021
A Survey of Uncertainty in Deep Neural Networks
A Survey of Uncertainty in Deep Neural Networks
J. Gawlikowski
Cedrique Rovile Njieutcheu Tassi
Mohsin Ali
Jongseo Lee
Matthias Humt
...
R. Roscher
Muhammad Shahzad
Wen Yang
R. Bamler
Xiaoxiang Zhu
BDLUQCVOOD
553
1,496
0
07 Jul 2021
On Out-of-distribution Detection with Energy-based Models
On Out-of-distribution Detection with Energy-based Models
Sven Elflein
Bertrand Charpentier
Daniel Zügner
Stephan Günnemann
OODD
161
22
0
03 Jul 2021
Valid prediction intervals for regression problems
Valid prediction intervals for regression problemsArtificial Intelligence Review (AIR), 2021
Nicolas Dewolf
B. De Baets
Willem Waegeman
433
60
0
01 Jul 2021
Adversarial Machine Learning for Cybersecurity and Computer Vision:
  Current Developments and Challenges
Adversarial Machine Learning for Cybersecurity and Computer Vision: Current Developments and Challenges
B. Xi
AAML
90
32
0
30 Jun 2021
Scene Uncertainty and the Wellington Posterior of Deterministic Image
  Classifiers
Scene Uncertainty and the Wellington Posterior of Deterministic Image Classifiers
Stephanie Tsuei
Aditya Golatkar
Stefano Soatto
UQCV
174
0
0
25 Jun 2021
Graceful Degradation and Related Fields
Graceful Degradation and Related Fields
J. Dymond
204
5
0
21 Jun 2021
Being a Bit Frequentist Improves Bayesian Neural Networks
Being a Bit Frequentist Improves Bayesian Neural NetworksInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2021
Agustinus Kristiadi
Matthias Hein
Philipp Hennig
BDLUQCV
227
17
0
18 Jun 2021
Structured DropConnect for Uncertainty Inference in Image Classification
Structured DropConnect for Uncertainty Inference in Image Classification
Wenqing Zheng
Jiyang Xie
Weidong Liu
Zhanyu Ma
UQCVBDL
132
3
0
16 Jun 2021
Revisiting the Calibration of Modern Neural Networks
Revisiting the Calibration of Modern Neural Networks
Matthias Minderer
Josip Djolonga
Rob Romijnders
F. Hubis
Xiaohua Zhai
N. Houlsby
Dustin Tran
Mario Lucic
UQCV
392
446
0
15 Jun 2021
Understanding the Under-Coverage Bias in Uncertainty Estimation
Understanding the Under-Coverage Bias in Uncertainty EstimationNeural Information Processing Systems (NeurIPS), 2021
Yu Bai
Song Mei
Huan Wang
Caiming Xiong
UQCV
119
14
0
10 Jun 2021
Understanding Softmax Confidence and Uncertainty
Understanding Softmax Confidence and Uncertainty
Tim Pearce
Alexandra Brintrup
Jun Zhu
UQCV
272
107
0
09 Jun 2021
Provably Robust Detection of Out-of-distribution Data (almost) for free
Provably Robust Detection of Out-of-distribution Data (almost) for freeNeural Information Processing Systems (NeurIPS), 2021
Alexander Meinke
Julian Bitterwolf
Matthias Hein
OODD
220
22
0
08 Jun 2021
Can a single neuron learn predictive uncertainty?
Can a single neuron learn predictive uncertainty?
Edgardo Solano-Carrillo
UQCV
251
1
0
07 Jun 2021
Evidential Turing Processes
Evidential Turing ProcessesInternational Conference on Learning Representations (ICLR), 2021
M. Kandemir
Abdullah Akgul
Manuel Haussmann
Gözde B. Ünal
EDLUQCVBDL
172
10
0
02 Jun 2021
Active Learning in Bayesian Neural Networks with Balanced Entropy
  Learning Principle
Active Learning in Bayesian Neural Networks with Balanced Entropy Learning PrincipleInternational Conference on Learning Representations (ICLR), 2021
J. Woo
292
14
0
30 May 2021
Enhanced Isotropy Maximization Loss: Seamless and High-Performance
  Out-of-Distribution Detection Simply Replacing the SoftMax Loss
Enhanced Isotropy Maximization Loss: Seamless and High-Performance Out-of-Distribution Detection Simply Replacing the SoftMax Loss
David Macêdo
Teresa B Ludermir
OODD
446
15
0
30 May 2021
Greedy Bayesian Posterior Approximation with Deep Ensembles
Greedy Bayesian Posterior Approximation with Deep Ensembles
A. Tiulpin
Matthew B. Blaschko
UQCVFedML
224
4
0
29 May 2021
Blurs Behave Like Ensembles: Spatial Smoothings to Improve Accuracy,
  Uncertainty, and Robustness
Blurs Behave Like Ensembles: Spatial Smoothings to Improve Accuracy, Uncertainty, and RobustnessInternational Conference on Machine Learning (ICML), 2021
Namuk Park
S. Kim
UQCVAAML
290
24
0
26 May 2021
Epistemic Uncertainty Aware Semantic Localization and Mapping for
  Inference and Belief Space Planning
Epistemic Uncertainty Aware Semantic Localization and Mapping for Inference and Belief Space PlanningArtificial Intelligence (AI), 2021
Vladimir Tchuiev
Vadim Indelman
222
5
0
26 May 2021
Masked Contrastive Learning for Anomaly Detection
Masked Contrastive Learning for Anomaly DetectionInternational Joint Conference on Artificial Intelligence (IJCAI), 2021
Hyunsoo Cho
Jinseok Seol
Sang-goo Lee
SSL
192
47
0
18 May 2021
Scaling Ensemble Distribution Distillation to Many Classes with Proxy
  Targets
Scaling Ensemble Distribution Distillation to Many Classes with Proxy TargetsNeural Information Processing Systems (NeurIPS), 2021
Max Ryabinin
A. Malinin
Mark Gales
UQCV
181
20
0
14 May 2021
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential
  Family Distributions
Natural Posterior Network: Deep Bayesian Uncertainty for Exponential Family Distributions
Bertrand Charpentier
Oliver Borchert
Daniel Zügner
Simon Geisler
Stephan Günnemann
UQCVBDL
263
19
0
10 May 2021
Meta-Cal: Well-controlled Post-hoc Calibration by Ranking
Meta-Cal: Well-controlled Post-hoc Calibration by RankingInternational Conference on Machine Learning (ICML), 2021
Xingchen Ma
Matthew B. Blaschko
256
41
0
10 May 2021
A Bit More Bayesian: Domain-Invariant Learning with Uncertainty
A Bit More Bayesian: Domain-Invariant Learning with UncertaintyInternational Conference on Machine Learning (ICML), 2021
Zehao Xiao
Jiayi Shen
Xiantong Zhen
Ling Shao
Cees G. M. Snoek
BDLUQCVOOD
246
47
0
09 May 2021
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic
  Space
MOS: Towards Scaling Out-of-distribution Detection for Large Semantic SpaceComputer Vision and Pattern Recognition (CVPR), 2021
Rui Huang
Shouqing Yang
OODD
363
295
0
05 May 2021
Out-of-distribution Detection and Generation using Soft Brownian Offset
  Sampling and Autoencoders
Out-of-distribution Detection and Generation using Soft Brownian Offset Sampling and Autoencoders
Felix Möller
Diego Botache
Denis Huseljic
Florian Heidecker
Maarten Bieshaar
Bernhard Sick
OODD
297
27
0
04 May 2021
Inspect, Understand, Overcome: A Survey of Practical Methods for AI
  Safety
Inspect, Understand, Overcome: A Survey of Practical Methods for AI Safety
Sebastian Houben
Stephanie Abrecht
Maram Akila
Andreas Bär
Felix Brockherde
...
Serin Varghese
Michael Weber
Sebastian J. Wirkert
Tim Wirtz
Matthias Woehrle
AAML
323
61
0
29 Apr 2021
Rethinking Ensemble-Distillation for Semantic Segmentation Based
  Unsupervised Domain Adaptation
Rethinking Ensemble-Distillation for Semantic Segmentation Based Unsupervised Domain Adaptation
Chen-Hao Chao
Bo Wun Cheng
Chun-Yi Lee
224
17
0
29 Apr 2021
Exploring Uncertainty in Deep Learning for Construction of Prediction
  Intervals
Exploring Uncertainty in Deep Learning for Construction of Prediction Intervals
Yuandu Lai
Yucheng Shi
Yahong Han
Yunfeng Shao
Meiyu Qi
Bingshuai Li
UQCV
177
16
0
27 Apr 2021
Multivariate Deep Evidential Regression
Multivariate Deep Evidential Regression
N. Meinert
Alexander Lavin
BDLPEREDLUQCV
378
29
0
13 Apr 2021
Out-of-distribution detection in satellite image classification
Out-of-distribution detection in satellite image classification
J. Gawlikowski
Sudipan Saha
Anna M. Kruspe
Xiaoxiang Zhu
131
8
0
09 Apr 2021
Trusting small training dataset for supervised change detection
Trusting small training dataset for supervised change detection
Sudipan Saha
Biplab Banerjee
Xiaoxiang Zhu
81
7
0
09 Apr 2021
Multi-Class Data Description for Out-of-distribution Detection
Multi-Class Data Description for Out-of-distribution DetectionKnowledge Discovery and Data Mining (KDD), 2020
Dongha Lee
Sehun Yu
Hwanjo Yu
OODD
127
41
0
02 Apr 2021
Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics Systems
Adaptive Autonomy in Human-on-the-Loop Vision-Based Robotics SystemsWorkshop on AI Engineering - Software Engineering for AI (ESEA), 2021
Sophia J. Abraham
Zachariah Carmichael
Sreya Banerjee
Rosaura G. VidalMata
Ankit Agrawal
M. N. A. Islam
Walter J. Scheirer
J. Cleland-Huang
175
22
0
28 Mar 2021
Towards Improving the Trustworthiness of Hardware based Malware Detector
  using Online Uncertainty Estimation
Towards Improving the Trustworthiness of Hardware based Malware Detector using Online Uncertainty EstimationDesign Automation Conference (DAC), 2021
H. Kumar
Nikhil Chawla
Saibal Mukhopadhyay
42
8
0
21 Mar 2021
Pixel-wise Anomaly Detection in Complex Driving Scenes
Pixel-wise Anomaly Detection in Complex Driving ScenesComputer Vision and Pattern Recognition (CVPR), 2021
Giancarlo Di Biase
Hermann Blum
Roland Siegwart
Cesar Cadena
UQCV
201
180
0
09 Mar 2021
Fool Me Once: Robust Selective Segmentation via Out-of-Distribution
  Detection with Contrastive Learning
Fool Me Once: Robust Selective Segmentation via Out-of-Distribution Detection with Contrastive LearningIEEE International Conference on Robotics and Automation (ICRA), 2021
David S. W. Williams
Matthew Gadd
D. Martini
Paul Newman
OODD
140
15
0
01 Mar 2021
NOMU: Neural Optimization-based Model Uncertainty
NOMU: Neural Optimization-based Model UncertaintyInternational Conference on Machine Learning (ICML), 2021
Jakob Heiss
Jakob Weissteiner
Hanna Wutte
Sven Seuken
Josef Teichmann
BDL
464
22
0
26 Feb 2021
A statistical framework for efficient out of distribution detection in
  deep neural networks
A statistical framework for efficient out of distribution detection in deep neural networksInternational Conference on Learning Representations (ICLR), 2021
Matan Haroush
Tzviel Frostig
R. Heller
Daniel Soudry
OODD
252
40
0
25 Feb 2021
Bayesian OOD detection with aleatoric uncertainty and outlier exposure
Bayesian OOD detection with aleatoric uncertainty and outlier exposure
Xi Wang
Laurence Aitchison
UD
282
19
0
24 Feb 2021
Deep Deterministic Uncertainty: A Simple Baseline
Deep Deterministic Uncertainty: A Simple BaselineComputer Vision and Pattern Recognition (CVPR), 2021
Jishnu Mukhoti
Andreas Kirsch
Joost R. van Amersfoort
Juil Sock
Y. Gal
UDUQCVPERBDL
451
217
0
23 Feb 2021
DEUP: Direct Epistemic Uncertainty Prediction
DEUP: Direct Epistemic Uncertainty Prediction
Salem Lahlou
Moksh Jain
Hadi Nekoei
V. Butoi
Paul Bertin
Jarrid Rector-Brooks
Maksym Korablyov
Yoshua Bengio
PERUQLMUQCVUD
605
109
0
16 Feb 2021
Previous
123...10111289
Next