ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.04386
  4. Cited By
Flipout: Efficient Pseudo-Independent Weight Perturbations on
  Mini-Batches
v1v2 (latest)

Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches

International Conference on Learning Representations (ICLR), 2018
12 March 2018
Yeming Wen
Paul Vicol
Jimmy Ba
Dustin Tran
Roger C. Grosse
    BDL
ArXiv (abs)PDFHTML

Papers citing "Flipout: Efficient Pseudo-Independent Weight Perturbations on Mini-Batches"

50 / 174 papers shown
Title
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation
  and Robustness under Distribution Shifts
Density-Softmax: Efficient Test-time Model for Uncertainty Estimation and Robustness under Distribution ShiftsInternational Conference on Machine Learning (ICML), 2023
H. Bui
Anqi Liu
OODUQCV
566
9
0
13 Feb 2023
Beyond In-Domain Scenarios: Robust Density-Aware Calibration
Beyond In-Domain Scenarios: Robust Density-Aware CalibrationInternational Conference on Machine Learning (ICML), 2023
Christian Tomani
Futa Waseda
Yuesong Shen
Zorah Lähner
UQCV
202
12
0
10 Feb 2023
A Benchmark on Uncertainty Quantification for Deep Learning Prognostics
A Benchmark on Uncertainty Quantification for Deep Learning PrognosticsReliability Engineering & System Safety (Reliab. Eng. Syst. Saf.), 2023
Luis Basora
Arthur Viens
M. A. Chao
X. Olive
UQCVBDLOOD
196
33
0
09 Feb 2023
Constraining cosmological parameters from N-body simulations with
  Variational Bayesian Neural Networks
Constraining cosmological parameters from N-body simulations with Variational Bayesian Neural NetworksFrontiers in Astronomy and Space Sciences (Front. Astron. Space Sci.), 2023
Héctor J. Hortúa
L. '. García
Leonardo Castañeda C.
BDL
142
6
0
09 Jan 2023
Benchmarking common uncertainty estimation methods with
  histopathological images under domain shift and label noise
Benchmarking common uncertainty estimation methods with histopathological images under domain shift and label noise
H. A. Mehrtens
Alexander Kurz
Tabea-Clara Bucher
T. Brinker
OODUQCV
497
16
0
03 Jan 2023
Uncertainty Quantification for Deep Neural Networks: An Empirical
  Comparison and Usage Guidelines
Uncertainty Quantification for Deep Neural Networks: An Empirical Comparison and Usage GuidelinesSoftware testing, verification & reliability (STVR), 2022
Michael Weiss
Paolo Tonella
BDLUQCV
166
13
0
14 Dec 2022
Toward Robust Diagnosis: A Contour Attention Preserving Adversarial
  Defense for COVID-19 Detection
Toward Robust Diagnosis: A Contour Attention Preserving Adversarial Defense for COVID-19 DetectionAAAI Conference on Artificial Intelligence (AAAI), 2022
Kunlan Xiang
Xing Zhang
Jinwen She
Jinpeng Liu
Haohan Wang
Shiqi Deng
Shancheng Jiang
OODMedIm
199
7
0
30 Nov 2022
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection
  Tasks
Benchmarking Bayesian Deep Learning on Diabetic Retinopathy Detection Tasks
Neil Band
Tim G. J. Rudner
Qixuan Feng
Angelos Filos
Zachary Nado
Michael W. Dusenberry
Ghassen Jerfel
Dustin Tran
Y. Gal
OODUQCVBDL
140
64
0
23 Nov 2022
Hierarchically Structured Task-Agnostic Continual Learning
Hierarchically Structured Task-Agnostic Continual LearningMachine-mediated learning (ML), 2022
Heinke Hihn
Daniel A. Braun
BDLCLL
169
14
0
14 Nov 2022
Do Bayesian Neural Networks Need To Be Fully Stochastic?
Do Bayesian Neural Networks Need To Be Fully Stochastic?International Conference on Artificial Intelligence and Statistics (AISTATS), 2022
Mrinank Sharma
Sebastian Farquhar
Eric T. Nalisnick
Tom Rainforth
BDL
251
70
0
11 Nov 2022
Disentangled Uncertainty and Out of Distribution Detection in Medical
  Generative Models
Disentangled Uncertainty and Out of Distribution Detection in Medical Generative Models
Kumud Lakara
Matias Valdenegro-Toro
UQCVOOD
150
1
0
11 Nov 2022
A Benchmark for Out of Distribution Detection in Point Cloud 3D Semantic
  Segmentation
A Benchmark for Out of Distribution Detection in Point Cloud 3D Semantic Segmentation
Lokesh Veeramacheneni
Matias Valdenegro-Toro
3DPCUQCV
151
2
0
11 Nov 2022
Comparison of Uncertainty Quantification with Deep Learning in Time
  Series Regression
Comparison of Uncertainty Quantification with Deep Learning in Time Series Regression
Levente Foldesi
Matias Valdenegro-Toro
UQCV
128
5
0
11 Nov 2022
Farm-wide virtual load monitoring for offshore wind structures via
  Bayesian neural networks
Farm-wide virtual load monitoring for offshore wind structures via Bayesian neural networksStructural Health Monitoring (SHM), 2022
Nandar Hlaing
P. G. Morato
F. D. Santos
W. Weijtjens
C. Devriendt
P. Rigo
185
14
0
31 Oct 2022
Accelerated Linearized Laplace Approximation for Bayesian Deep Learning
Accelerated Linearized Laplace Approximation for Bayesian Deep LearningNeural Information Processing Systems (NeurIPS), 2022
Zhijie Deng
Feng Zhou
Jun Zhu
BDL
181
22
0
23 Oct 2022
An out-of-distribution discriminator based on Bayesian neural network
  epistemic uncertainty
An out-of-distribution discriminator based on Bayesian neural network epistemic uncertainty
Ethan Ancell
Christopher Bennett
B. Debusschere
S. Agarwal
Park Hays
T. Xiao
BDLUQCVUDPER
170
1
0
18 Oct 2022
Deep Combinatorial Aggregation
Deep Combinatorial AggregationNeural Information Processing Systems (NeurIPS), 2022
Yuesong Shen
Zorah Lähner
OODUQCV
125
6
0
12 Oct 2022
What Makes Graph Neural Networks Miscalibrated?
What Makes Graph Neural Networks Miscalibrated?Neural Information Processing Systems (NeurIPS), 2022
Hans Hao-Hsun Hsu
Yuesong Shen
Christian Tomani
Zorah Lähner
252
46
0
12 Oct 2022
Probabilistic Inverse Modeling: An Application in Hydrology
Probabilistic Inverse Modeling: An Application in HydrologySDM (SDM), 2022
Somya Sharma
Rahul Ghosh
Arvind Renganathan
Xiang Li
Snigdhansu Chatterjee
John L. Nieber
C. Duffy
Vipin Kumar
AI4CE
151
1
0
12 Oct 2022
Scaling Forward Gradient With Local Losses
Scaling Forward Gradient With Local LossesInternational Conference on Learning Representations (ICLR), 2022
Mengye Ren
Simon Kornblith
Renjie Liao
Geoffrey E. Hinton
432
69
0
07 Oct 2022
Variational Autoencoder Kernel Interpretation and Selection for
  Classification
Variational Autoencoder Kernel Interpretation and Selection for Classification
Fábio Mendonça
S. Mostafa
F. M. Dias
A. Ravelo-García
DRL
114
0
0
10 Sep 2022
ProBoost: a Boosting Method for Probabilistic Classifiers
ProBoost: a Boosting Method for Probabilistic ClassifiersIEEE Access (IEEE Access), 2022
Fábio Mendonça
S. Mostafa
F. Morgado‐Dias
A. Ravelo-García
Mário A. T. Figueiredo
UQCV
74
0
0
04 Sep 2022
A Novel Data Augmentation Technique for Out-of-Distribution Sample
  Detection using Compounded Corruptions
A Novel Data Augmentation Technique for Out-of-Distribution Sample Detection using Compounded Corruptions
R. Hebbalaguppe
Soumya Suvra Goshal
Jatin Prakash
H. Khadilkar
Chetan Arora
OODD
193
8
0
28 Jul 2022
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
Shifts 2.0: Extending The Dataset of Real Distributional Shifts
A. Malinin
A. Athanasopoulos
M. Barakovic
Meritxell Bach Cuadra
Mark Gales
...
Francesco La Rosa
Eli Sivena
V. Tsarsitalidis
Efi Tsompopoulou
E. Volf
OOD
180
35
0
30 Jun 2022
Image-based Treatment Effect Heterogeneity
Image-based Treatment Effect HeterogeneityCLEaR (CLEaR), 2022
Connor Jerzak
Fredrik D. Johansson
Adel Daoud
444
30
0
13 Jun 2022
Feature Space Particle Inference for Neural Network Ensembles
Feature Space Particle Inference for Neural Network EnsemblesInternational Conference on Machine Learning (ICML), 2022
Shingo Yashima
Teppei Suzuki
Kohta Ishikawa
Ikuro Sato
Rei Kawakami
BDL
229
12
0
02 Jun 2022
Posterior Refinement Improves Sample Efficiency in Bayesian Neural
  Networks
Posterior Refinement Improves Sample Efficiency in Bayesian Neural NetworksNeural Information Processing Systems (NeurIPS), 2022
Agustinus Kristiadi
Runa Eschenhagen
Philipp Hennig
BDL
210
15
0
20 May 2022
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid
  Simulations
Leveraging Stochastic Predictions of Bayesian Neural Networks for Fluid Simulations
Maximilian Mueller
Robin Greif
Frank Jenko
Nils Thuerey
146
3
0
02 May 2022
Joint Learning of Reward Machines and Policies in Environments with
  Partially Known Semantics
Joint Learning of Reward Machines and Policies in Environments with Partially Known SemanticsArtificial Intelligence (AIJ), 2022
Christos K. Verginis
Cevahir Köprülü
Sandeep Chinchali
Ufuk Topcu
208
13
0
20 Apr 2022
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
A Deeper Look into Aleatoric and Epistemic Uncertainty Disentanglement
Matias Valdenegro-Toro
Daniel Saromo
UDPERBDLUQCV
197
121
0
20 Apr 2022
Mitigating Closed-model Adversarial Examples with Bayesian Neural
  Modeling for Enhanced End-to-End Speech Recognition
Mitigating Closed-model Adversarial Examples with Bayesian Neural Modeling for Enhanced End-to-End Speech RecognitionIEEE International Conference on Acoustics, Speech, and Signal Processing (ICASSP), 2022
Chao-Han Huck Yang
Zeeshan Ahmed
Yile Gu
Joseph Szurley
Roger Ren
Linda Liu
A. Stolcke
I. Bulyko
AAML
174
4
0
17 Feb 2022
A heteroencoder architecture for prediction of failure locations in
  porous metals using variational inference
A heteroencoder architecture for prediction of failure locations in porous metals using variational inferenceComputer Methods in Applied Mechanics and Engineering (CMAME), 2022
Wyatt Bridgman
Xiaoxuan Zhang
G. Teichert
M. Khalil
K. Garikipati
Reese E. Jones
UQCVAI4CE
206
6
0
31 Jan 2022
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Assessing Cross-dataset Generalization of Pedestrian Crossing Predictors
Joseph Gesnouin
Steve Pechberti
B. Stanciulescu
Fabien Moutarde
120
15
0
29 Jan 2022
Complexity from Adaptive-Symmetries Breaking: Global Minima in the
  Statistical Mechanics of Deep Neural Networks
Complexity from Adaptive-Symmetries Breaking: Global Minima in the Statistical Mechanics of Deep Neural Networks
Shaun Li
AI4CE
226
1
0
03 Jan 2022
Constraining cosmological parameters from N-body simulations with
  Bayesian Neural Networks
Constraining cosmological parameters from N-body simulations with Bayesian Neural Networks
Héctor J. Hortúa
BDL
114
2
0
22 Dec 2021
A Statistics and Deep Learning Hybrid Method for Multivariate Time
  Series Forecasting and Mortality Modeling
A Statistics and Deep Learning Hybrid Method for Multivariate Time Series Forecasting and Mortality Modeling
Thabang Mathonsi
Terence L van Zyl
AI4TS
144
36
0
16 Dec 2021
Benchmark for Out-of-Distribution Detection in Deep Reinforcement
  Learning
Benchmark for Out-of-Distribution Detection in Deep Reinforcement Learning
Aaqib Parvez Mohammed
Matias Valdenegro-Toro
OODOffRL
132
12
0
05 Dec 2021
Probabilistic Approach for Road-Users Detection
Probabilistic Approach for Road-Users Detection
Gledson Melotti
Weihao Lu
Pedro Conde
Dezong Zhao
A. Asvadi
Nuno Gonçalves
C. Premebida
331
5
0
02 Dec 2021
Exploring the Limits of Epistemic Uncertainty Quantification in Low-Shot
  Settings
Exploring the Limits of Epistemic Uncertainty Quantification in Low-Shot Settings
Matias Valdenegro-Toro
UQCV
121
3
0
18 Nov 2021
Uncertainty Quantification in Neural Differential Equations
Uncertainty Quantification in Neural Differential Equations
Olga Graf
P. Flores
P. Protopapas
K. Pichara
UQCVAI4CE
179
7
0
08 Nov 2021
Probabilistic Deep Learning for Real-Time Large Deformation Simulations
Probabilistic Deep Learning for Real-Time Large Deformation SimulationsComputer Methods in Applied Mechanics and Engineering (CMAME), 2021
Saurabh Deshpande
J. Lengiewicz
Stéphane P. A. Bordas
OODBDLAI4CE
209
58
0
02 Nov 2021
Comparing Bayesian Models for Organ Contouring in Head and Neck
  Radiotherapy
Comparing Bayesian Models for Organ Contouring in Head and Neck Radiotherapy
P. Mody
Nicolas F. Chaves-de-Plaza
Klaus Hildebrandt
R. Egmond
H. Ridder
Marius Staring
UQCV
162
7
0
01 Nov 2021
Mixture-of-Variational-Experts for Continual Learning
Mixture-of-Variational-Experts for Continual Learning
Y. Yin
Yu Wang
CLLFedML
294
10
0
25 Oct 2021
Flattening Sharpness for Dynamic Gradient Projection Memory Benefits
  Continual Learning
Flattening Sharpness for Dynamic Gradient Projection Memory Benefits Continual LearningNeural Information Processing Systems (NeurIPS), 2021
Danruo Deng
Guangyong Chen
Jianye Hao
Qiong Wang
Pheng-Ann Heng
CLLAAML
130
98
0
09 Oct 2021
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in
  Safety-Critical Applications
An Uncertainty-Informed Framework for Trustworthy Fault Diagnosis in Safety-Critical ApplicationsReliability Engineering & System Safety (Reliab. Eng. Syst. Saf.), 2021
Taotao Zhou
E. Droguett
A. Mosleh
F. Chan
EDL
119
59
0
08 Oct 2021
Pathologies in priors and inference for Bayesian transformers
Pathologies in priors and inference for Bayesian transformers
Tristan Cinquin
Alexander Immer
Max Horn
Vincent Fortuin
UQCVBDLMedIm
350
11
0
08 Oct 2021
TyXe: Pyro-based Bayesian neural nets for Pytorch
TyXe: Pyro-based Bayesian neural nets for Pytorch
H. Ritter
Theofanis Karaletsos
OODMUBDL
183
7
0
01 Oct 2021
Uncertainty-Aware Reliable Text Classification
Uncertainty-Aware Reliable Text ClassificationKnowledge Discovery and Data Mining (KDD), 2021
Yibo Hu
Latifur Khan
EDLUQCV
147
36
0
15 Jul 2021
Laplace Redux -- Effortless Bayesian Deep Learning
Laplace Redux -- Effortless Bayesian Deep LearningNeural Information Processing Systems (NeurIPS), 2021
Erik A. Daxberger
Agustinus Kristiadi
Alexander Immer
Runa Eschenhagen
Matthias Bauer
Philipp Hennig
BDLUQCV
667
387
0
28 Jun 2021
Scene Uncertainty and the Wellington Posterior of Deterministic Image
  Classifiers
Scene Uncertainty and the Wellington Posterior of Deterministic Image Classifiers
Stephanie Tsuei
Aditya Golatkar
Stefano Soatto
UQCV
165
0
0
25 Jun 2021
Previous
1234
Next