ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1803.06084
  4. Cited By
A Kernel Theory of Modern Data Augmentation

A Kernel Theory of Modern Data Augmentation

16 March 2018
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
ArXivPDFHTML

Papers citing "A Kernel Theory of Modern Data Augmentation"

36 / 36 papers shown
Title
Nonlinear Transformations Against Unlearnable Datasets
Nonlinear Transformations Against Unlearnable Datasets
T. Hapuarachchi
Jing Lin
Kaiqi Xiong
Mohamed Rahouti
Gitte Ost
28
1
0
05 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
33
2
0
30 May 2024
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Johann Schmidt
Sebastian Stober
43
1
0
06 May 2024
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
Muthuraman Chidambaram
Rong Ge
AAML
18
0
0
10 Feb 2024
Collinear datasets augmentation using Procrustes validation sets
Collinear datasets augmentation using Procrustes validation sets
Sergey Kucheryavskiy
Sergei Zhilin
17
0
0
08 Dec 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
30
5
0
23 Mar 2023
Data Augmentation for Modeling Human Personality: The Dexter Machine
Data Augmentation for Modeling Human Personality: The Dexter Machine
Yair Neuman
Vladyslav Kozhukhov
Dan Vilenchik
SyDa
19
4
0
20 Jan 2023
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting
  Data Augmentation
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting Data Augmentation
Zhendong Liu
Wenyu Jiang
Min Guo
Chongjun Wang
AAML
21
1
0
08 Dec 2022
The Curious Case of Benign Memorization
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
39
8
0
25 Oct 2022
How Much Data Are Augmentations Worth? An Investigation into Scaling
  Laws, Invariance, and Implicit Regularization
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
24
35
0
12 Oct 2022
A Survey of Automated Data Augmentation Algorithms for Deep
  Learning-based Image Classification Tasks
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
16
39
0
14 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
80
8
0
27 May 2022
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
Shutong Wu
Sizhe Chen
Cihang Xie
X. Huang
AAML
40
26
0
24 May 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
A Comprehensive Survey of Image Augmentation Techniques for Deep
  Learning
A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
Mingle Xu
Sook Yoon
A. Fuentes
D. Park
VLM
22
393
0
03 May 2022
Perfectly Balanced: Improving Transfer and Robustness of Supervised
  Contrastive Learning
Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Mayee F. Chen
Daniel Y. Fu
A. Narayan
Michael Zhang
Zhao-quan Song
Kayvon Fatahalian
Christopher Ré
SSL
19
46
0
15 Apr 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
23
17
0
24 Feb 2022
Adversarially Robust Models may not Transfer Better: Sufficient
  Conditions for Domain Transferability from the View of Regularization
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Bo-wen Li
20
10
0
03 Feb 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
14
67
0
04 Jan 2022
Building Legal Datasets
Building Legal Datasets
Jerrold Soh
ELM
AILaw
22
3
0
03 Nov 2021
Towards Robust Waveform-Based Acoustic Models
Towards Robust Waveform-Based Acoustic Models
Dino Oglic
Zoran Cvetkovic
Peter Sollich
Steve Renals
Bin Yu
OOD
AAML
13
1
0
16 Oct 2021
Metadata Shaping: Natural Language Annotations for the Tail
Metadata Shaping: Natural Language Annotations for the Tail
Simran Arora
Sen Wu
Enci Liu
Christopher Ré
17
0
0
16 Oct 2021
Data Augmentation Approaches in Natural Language Processing: A Survey
Data Augmentation Approaches in Natural Language Processing: A Survey
Bohan Li
Yutai Hou
Wanxiang Che
121
270
0
05 Oct 2021
Data augmentation in Bayesian neural networks and the cold posterior
  effect
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
19
37
0
10 Jun 2021
A Survey of Data Augmentation Approaches for NLP
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
35
799
0
07 May 2021
On Interaction Between Augmentations and Corruptions in Natural
  Corruption Robustness
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
Eric Mintun
A. Kirillov
Saining Xie
20
89
0
22 Feb 2021
An Algorithm for Learning Smaller Representations of Models With Scarce
  Data
An Algorithm for Learning Smaller Representations of Models With Scarce Data
Adrian de Wynter
33
2
0
15 Oct 2020
On Data Augmentation for GAN Training
On Data Augmentation for GAN Training
Ngoc-Trung Tran
Viet-Hung Tran
Ngoc-Bao Nguyen
Trung-Kien Nguyen
Ngai-man Cheung
MedIm
18
35
0
09 Jun 2020
Do CNNs Encode Data Augmentations?
Do CNNs Encode Data Augmentations?
Eddie Q. Yan
Yanping Huang
OOD
11
5
0
29 Feb 2020
Topologically Densified Distributions
Topologically Densified Distributions
Christoph Hofer
Florian Graf
Marc Niethammer
Roland Kwitt
22
15
0
12 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved
  Generalization
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin G. Walters
Rose Yu
AI4CE
38
167
0
08 Feb 2020
A Shape Transformation-based Dataset Augmentation Framework for
  Pedestrian Detection
A Shape Transformation-based Dataset Augmentation Framework for Pedestrian Detection
Zhe Chen
Wanli Ouyang
Tongliang Liu
Dacheng Tao
ViT
19
23
0
15 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
16
131
0
03 Nov 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian
  Augmentation
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
16
204
0
06 Jun 2019
Zero-Shot Knowledge Distillation in Deep Networks
Zero-Shot Knowledge Distillation in Deep Networks
Gaurav Kumar Nayak
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
Anirban Chakraborty
8
245
0
20 May 2019
Learning Invariances using the Marginal Likelihood
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
26
83
0
16 Aug 2018
1