Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.06084
Cited By
A Kernel Theory of Modern Data Augmentation
16 March 2018
Tri Dao
Albert Gu
Alexander J. Ratner
Virginia Smith
Christopher De Sa
Christopher Ré
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Kernel Theory of Modern Data Augmentation"
36 / 36 papers shown
Title
Nonlinear Transformations Against Unlearnable Datasets
T. Hapuarachchi
Jing Lin
Kaiqi Xiong
Mohamed Rahouti
Gitte Ost
28
1
0
05 Jun 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
33
2
0
30 May 2024
Tilt your Head: Activating the Hidden Spatial-Invariance of Classifiers
Johann Schmidt
Sebastian Stober
43
1
0
06 May 2024
For Better or For Worse? Learning Minimum Variance Features With Label Augmentation
Muthuraman Chidambaram
Rong Ge
AAML
18
0
0
10 Feb 2024
Collinear datasets augmentation using Procrustes validation sets
Sergey Kucheryavskiy
Sergei Zhilin
17
0
0
08 Dec 2023
Optimization Dynamics of Equivariant and Augmented Neural Networks
Axel Flinth
F. Ohlsson
30
5
0
23 Mar 2023
Data Augmentation for Modeling Human Personality: The Dexter Machine
Yair Neuman
Vladyslav Kozhukhov
Dan Vilenchik
SyDa
19
4
0
20 Jan 2023
MixBoost: Improving the Robustness of Deep Neural Networks by Boosting Data Augmentation
Zhendong Liu
Wenyu Jiang
Min Guo
Chongjun Wang
AAML
21
1
0
08 Dec 2022
The Curious Case of Benign Memorization
Sotiris Anagnostidis
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
AAML
39
8
0
25 Oct 2022
How Much Data Are Augmentations Worth? An Investigation into Scaling Laws, Invariance, and Implicit Regularization
Jonas Geiping
Micah Goldblum
Gowthami Somepalli
Ravid Shwartz-Ziv
Tom Goldstein
A. Wilson
24
35
0
12 Oct 2022
A Survey of Automated Data Augmentation Algorithms for Deep Learning-based Image Classification Tasks
Z. Yang
Richard Sinnott
James Bailey
Qiuhong Ke
16
39
0
14 Jun 2022
How Tempering Fixes Data Augmentation in Bayesian Neural Networks
Gregor Bachmann
Lorenzo Noci
Thomas Hofmann
BDL
AAML
80
8
0
27 May 2022
One-Pixel Shortcut: on the Learning Preference of Deep Neural Networks
Shutong Wu
Sizhe Chen
Cihang Xie
X. Huang
AAML
40
26
0
24 May 2022
Perspectives on Incorporating Expert Feedback into Model Updates
Valerie Chen
Umang Bhatt
Hoda Heidari
Adrian Weller
Ameet Talwalkar
30
11
0
13 May 2022
A Comprehensive Survey of Image Augmentation Techniques for Deep Learning
Mingle Xu
Sook Yoon
A. Fuentes
D. Park
VLM
22
393
0
03 May 2022
Perfectly Balanced: Improving Transfer and Robustness of Supervised Contrastive Learning
Mayee F. Chen
Daniel Y. Fu
A. Narayan
Michael Zhang
Zhao-quan Song
Kayvon Fatahalian
Christopher Ré
SSL
19
46
0
15 Apr 2022
Sample Efficiency of Data Augmentation Consistency Regularization
Shuo Yang
Yijun Dong
Rachel A. Ward
Inderjit S. Dhillon
Sujay Sanghavi
Qi Lei
AAML
23
17
0
24 Feb 2022
Adversarially Robust Models may not Transfer Better: Sufficient Conditions for Domain Transferability from the View of Regularization
Xiaojun Xu
Jacky Y. Zhang
Evelyn Ma
Danny Son
Oluwasanmi Koyejo
Bo-wen Li
20
10
0
03 Feb 2022
AutoBalance: Optimized Loss Functions for Imbalanced Data
Mingchen Li
Xuechen Zhang
Christos Thrampoulidis
Jiasi Chen
Samet Oymak
14
67
0
04 Jan 2022
Building Legal Datasets
Jerrold Soh
ELM
AILaw
22
3
0
03 Nov 2021
Towards Robust Waveform-Based Acoustic Models
Dino Oglic
Zoran Cvetkovic
Peter Sollich
Steve Renals
Bin Yu
OOD
AAML
13
1
0
16 Oct 2021
Metadata Shaping: Natural Language Annotations for the Tail
Simran Arora
Sen Wu
Enci Liu
Christopher Ré
17
0
0
16 Oct 2021
Data Augmentation Approaches in Natural Language Processing: A Survey
Bohan Li
Yutai Hou
Wanxiang Che
121
270
0
05 Oct 2021
Data augmentation in Bayesian neural networks and the cold posterior effect
Seth Nabarro
Stoil Ganev
Adrià Garriga-Alonso
Vincent Fortuin
Mark van der Wilk
Laurence Aitchison
BDL
19
37
0
10 Jun 2021
A Survey of Data Augmentation Approaches for NLP
Steven Y. Feng
Varun Gangal
Jason W. Wei
Sarath Chandar
Soroush Vosoughi
Teruko Mitamura
Eduard H. Hovy
AIMat
35
799
0
07 May 2021
On Interaction Between Augmentations and Corruptions in Natural Corruption Robustness
Eric Mintun
A. Kirillov
Saining Xie
20
89
0
22 Feb 2021
An Algorithm for Learning Smaller Representations of Models With Scarce Data
Adrian de Wynter
33
2
0
15 Oct 2020
On Data Augmentation for GAN Training
Ngoc-Trung Tran
Viet-Hung Tran
Ngoc-Bao Nguyen
Trung-Kien Nguyen
Ngai-man Cheung
MedIm
18
35
0
09 Jun 2020
Do CNNs Encode Data Augmentations?
Eddie Q. Yan
Yanping Huang
OOD
11
5
0
29 Feb 2020
Topologically Densified Distributions
Christoph Hofer
Florian Graf
Marc Niethammer
Roland Kwitt
22
15
0
12 Feb 2020
Incorporating Symmetry into Deep Dynamics Models for Improved Generalization
Rui Wang
Robin G. Walters
Rose Yu
AI4CE
38
167
0
08 Feb 2020
A Shape Transformation-based Dataset Augmentation Framework for Pedestrian Detection
Zhe Chen
Wanli Ouyang
Tongliang Liu
Dacheng Tao
ViT
19
23
0
15 Dec 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
16
131
0
03 Nov 2019
Improving Robustness Without Sacrificing Accuracy with Patch Gaussian Augmentation
Raphael Gontijo-Lopes
Dong Yin
Ben Poole
Justin Gilmer
E. D. Cubuk
AAML
16
204
0
06 Jun 2019
Zero-Shot Knowledge Distillation in Deep Networks
Gaurav Kumar Nayak
Konda Reddy Mopuri
Vaisakh Shaj
R. Venkatesh Babu
Anirban Chakraborty
8
245
0
20 May 2019
Learning Invariances using the Marginal Likelihood
Mark van der Wilk
Matthias Bauer
S. T. John
J. Hensman
26
83
0
16 Aug 2018
1