Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1803.08367
Cited By
Gradient Descent Quantizes ReLU Network Features
22 March 2018
Hartmut Maennel
Olivier Bousquet
Sylvain Gelly
MLT
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Gradient Descent Quantizes ReLU Network Features"
50 / 55 papers shown
Title
Alternating Gradient Flows: A Theory of Feature Learning in Two-layer Neural Networks
D. Kunin
Giovanni Luca Marchetti
F. Chen
Dhruva Karkada
James B. Simon
M. DeWeese
Surya Ganguli
Nina Miolane
18
0
0
06 Jun 2025
Benignity of loss landscape with weight decay requires both large overparametrization and initialization
Etienne Boursier
Matthew Bowditch
Matthias Englert
R. Lazic
32
0
0
28 May 2025
An overview of condensation phenomenon in deep learning
Zhi-Qin John Xu
Yaoyu Zhang
Zhangchen Zhou
AI4CE
66
4
0
13 Apr 2025
The Spectral Bias of Shallow Neural Network Learning is Shaped by the Choice of Non-linearity
Justin Sahs
Ryan Pyle
Fabio Anselmi
Ankit B. Patel
100
0
0
13 Mar 2025
Towards Understanding Text Hallucination of Diffusion Models via Local Generation Bias
Rui Lu
Runzhe Wang
Kaifeng Lyu
Xitai Jiang
Gao Huang
Mengdi Wang
DiffM
129
2
0
05 Mar 2025
Convergence of Shallow ReLU Networks on Weakly Interacting Data
Léo Dana
Francis R. Bach
Loucas Pillaud-Vivien
MLT
95
2
0
24 Feb 2025
Learning Gaussian Multi-Index Models with Gradient Flow: Time Complexity and Directional Convergence
Berfin Simsek
Amire Bendjeddou
Daniel Hsu
183
3
0
13 Nov 2024
Swing-by Dynamics in Concept Learning and Compositional Generalization
Yongyi Yang
Core Francisco Park
Ekdeep Singh Lubana
Maya Okawa
Wei Hu
Hidenori Tanaka
CoGe
DiffM
50
0
0
10 Oct 2024
Simplicity bias and optimization threshold in two-layer ReLU networks
Etienne Boursier
Nicolas Flammarion
93
4
0
03 Oct 2024
Local Linear Recovery Guarantee of Deep Neural Networks at Overparameterization
Yaoyu Zhang
Leyang Zhang
Zhongwang Zhang
Zhiwei Bai
73
0
0
26 Jun 2024
Get rich quick: exact solutions reveal how unbalanced initializations promote rapid feature learning
D. Kunin
Allan Raventós
Clémentine Dominé
Feng Chen
David Klindt
Andrew M. Saxe
Surya Ganguli
MLT
127
18
0
10 Jun 2024
Can Implicit Bias Imply Adversarial Robustness?
Hancheng Min
Rene Vidal
83
3
0
24 May 2024
Early Directional Convergence in Deep Homogeneous Neural Networks for Small Initializations
Akshay Kumar
Jarvis Haupt
ODL
103
4
0
12 Mar 2024
On the dynamics of three-layer neural networks: initial condensation
Zheng-an Chen
Tao Luo
MLT
AI4CE
39
3
0
25 Feb 2024
A topological description of loss surfaces based on Betti Numbers
Maria Sofia Bucarelli
Giuseppe Alessio D’Inverno
Monica Bianchini
F. Scarselli
Fabrizio Silvestri
49
2
0
08 Jan 2024
SGD Finds then Tunes Features in Two-Layer Neural Networks with near-Optimal Sample Complexity: A Case Study in the XOR problem
Margalit Glasgow
MLT
141
14
0
26 Sep 2023
RHINO: Regularizing the Hash-based Implicit Neural Representation
Hao Zhu
Feng Liu
Qi Zhang
Xun Cao
Zhan Ma
60
10
0
22 Sep 2023
Early Neuron Alignment in Two-layer ReLU Networks with Small Initialization
Hancheng Min
Enrique Mallada
René Vidal
MLT
88
23
0
24 Jul 2023
Optimistic Estimate Uncovers the Potential of Nonlinear Models
Yaoyu Zhang
Zhongwang Zhang
Leyang Zhang
Zhiwei Bai
Yaoyu Zhang
Z. Xu
42
5
0
18 Jul 2023
Learning a Neuron by a Shallow ReLU Network: Dynamics and Implicit Bias for Correlated Inputs
D. Chistikov
Matthias Englert
R. Lazic
MLT
94
12
0
10 Jun 2023
Loss Spike in Training Neural Networks
Zhongwang Zhang
Z. Xu
72
7
0
20 May 2023
Understanding the Initial Condensation of Convolutional Neural Networks
Zhangchen Zhou
Hanxu Zhou
Yuqing Li
Zhi-Qin John Xu
MLT
AI4CE
54
5
0
17 May 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Yaoyu Zhang
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
104
11
0
12 Mar 2023
Linear Stability Hypothesis and Rank Stratification for Nonlinear Models
Yaoyu Zhang
Zhongwang Zhang
Leyang Zhang
Zhiwei Bai
Yaoyu Zhang
Z. Xu
51
8
0
21 Nov 2022
Magnitude and Angle Dynamics in Training Single ReLU Neurons
Sangmin Lee
Byeongsu Sim
Jong Chul Ye
MLT
133
6
0
27 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
Volkan Cevher
91
21
0
15 Sep 2022
Implicit regularization of dropout
Zhongwang Zhang
Zhi-Qin John Xu
67
29
0
13 Jul 2022
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
Matthieu Wyart
MLT
94
26
0
24 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
89
34
0
20 Jun 2022
Intrinsic dimensionality and generalization properties of the
R
\mathcal{R}
R
-norm inductive bias
Navid Ardeshir
Daniel J. Hsu
Clayton Sanford
CML
AI4CE
110
6
0
10 Jun 2022
Gradient flow dynamics of shallow ReLU networks for square loss and orthogonal inputs
Etienne Boursier
Loucas Pillaud-Vivien
Nicolas Flammarion
ODL
77
61
0
02 Jun 2022
Empirical Phase Diagram for Three-layer Neural Networks with Infinite Width
Hanxu Zhou
Qixuan Zhou
Zhenyuan Jin
Yaoyu Zhang
Yaoyu Zhang
Zhi-Qin John Xu
55
22
0
24 May 2022
On the Effective Number of Linear Regions in Shallow Univariate ReLU Networks: Convergence Guarantees and Implicit Bias
Itay Safran
Gal Vardi
Jason D. Lee
MLT
101
24
0
18 May 2022
On Regularizing Coordinate-MLPs
Sameera Ramasinghe
L. MacDonald
Simon Lucey
206
5
0
01 Feb 2022
Embedding Principle: a hierarchical structure of loss landscape of deep neural networks
Yaoyu Zhang
Yuqing Li
Zhongwang Zhang
Yaoyu Zhang
Z. Xu
82
23
0
30 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Aleksandr Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
93
13
0
03 Nov 2021
Gradient Descent on Two-layer Nets: Margin Maximization and Simplicity Bias
Kaifeng Lyu
Zhiyuan Li
Runzhe Wang
Sanjeev Arora
MLT
100
76
0
26 Oct 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
84
11
0
13 Oct 2021
Convergence analysis for gradient flows in the training of artificial neural networks with ReLU activation
Arnulf Jentzen
Adrian Riekert
55
23
0
09 Jul 2021
Towards Understanding the Condensation of Neural Networks at Initial Training
Hanxu Zhou
Qixuan Zhou
Yaoyu Zhang
Yaoyu Zhang
Z. Xu
MLT
AI4CE
79
30
0
25 May 2021
Initializing ReLU networks in an expressive subspace of weights
Dayal Singh
J. SreejithG
22
4
0
23 Mar 2021
How Neural Networks Extrapolate: From Feedforward to Graph Neural Networks
Keyulu Xu
Mozhi Zhang
Jingling Li
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
MLT
182
313
0
24 Sep 2020
Geometric compression of invariant manifolds in neural nets
J. Paccolat
Leonardo Petrini
Mario Geiger
Kevin Tyloo
Matthieu Wyart
MLT
105
36
0
22 Jul 2020
Phase diagram for two-layer ReLU neural networks at infinite-width limit
Yaoyu Zhang
Zhi-Qin John Xu
Zheng Ma
Yaoyu Zhang
81
61
0
15 Jul 2020
Implicit Convex Regularizers of CNN Architectures: Convex Optimization of Two- and Three-Layer Networks in Polynomial Time
Tolga Ergen
Mert Pilanci
76
9
0
26 Jun 2020
On Sparsity in Overparametrised Shallow ReLU Networks
Jaume de Dios
Joan Bruna
57
14
0
18 Jun 2020
Convex Geometry and Duality of Over-parameterized Neural Networks
Tolga Ergen
Mert Pilanci
MLT
127
56
0
25 Feb 2020
Revealing the Structure of Deep Neural Networks via Convex Duality
Tolga Ergen
Mert Pilanci
MLT
87
72
0
22 Feb 2020
Frivolous Units: Wider Networks Are Not Really That Wide
Stephen Casper
Xavier Boix
Vanessa D’Amario
Ling Guo
Martin Schrimpf
Kasper Vinken
Gabriel Kreiman
55
19
0
10 Dec 2019
How Implicit Regularization of ReLU Neural Networks Characterizes the Learned Function -- Part I: the 1-D Case of Two Layers with Random First Layer
Jakob Heiss
Josef Teichmann
Hanna Wutte
MLT
19
5
0
07 Nov 2019
1
2
Next