Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1804.06561
Cited By
A Mean Field View of the Landscape of Two-Layers Neural Networks
18 April 2018
Song Mei
Andrea Montanari
Phan-Minh Nguyen
MLT
Re-assign community
ArXiv
PDF
HTML
Papers citing
"A Mean Field View of the Landscape of Two-Layers Neural Networks"
50 / 168 papers shown
Title
Mirror Mean-Field Langevin Dynamics
Anming Gu
Juno Kim
29
0
0
05 May 2025
Don't be lazy: CompleteP enables compute-efficient deep transformers
Nolan Dey
Bin Claire Zhang
Lorenzo Noci
Mufan Bill Li
Blake Bordelon
Shane Bergsma
C. Pehlevan
Boris Hanin
Joel Hestness
39
0
0
02 May 2025
Deep learning with missing data
Tianyi Ma
Tengyao Wang
R. Samworth
59
0
0
21 Apr 2025
Statistically guided deep learning
Michael Kohler
A. Krzyżak
ODL
BDL
66
0
0
11 Apr 2025
Analyzing the Role of Permutation Invariance in Linear Mode Connectivity
Keyao Zhan
Puheng Li
Lei Wu
MoMe
77
0
0
13 Mar 2025
A distributional simplicity bias in the learning dynamics of transformers
Riccardo Rende
Federica Gerace
A. Laio
Sebastian Goldt
71
8
0
17 Feb 2025
A theoretical framework for overfitting in energy-based modeling
Giovanni Catania
A. Decelle
Cyril Furtlehner
Beatriz Seoane
57
2
0
31 Jan 2025
Mean-Field Analysis for Learning Subspace-Sparse Polynomials with Gaussian Input
Ziang Chen
Rong Ge
MLT
59
1
0
10 Jan 2025
Emergence of meta-stable clustering in mean-field transformer models
Giuseppe Bruno
Federico Pasqualotto
Andrea Agazzi
45
6
0
30 Oct 2024
Estimating the Spectral Moments of the Kernel Integral Operator from Finite Sample Matrices
Chanwoo Chun
SueYeon Chung
Daniel D. Lee
24
1
0
23 Oct 2024
Robust Feature Learning for Multi-Index Models in High Dimensions
Alireza Mousavi-Hosseini
Adel Javanmard
Murat A. Erdogdu
OOD
AAML
42
1
0
21 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
58
0
0
08 Oct 2024
The Optimization Landscape of SGD Across the Feature Learning Strength
Alexander B. Atanasov
Alexandru Meterez
James B. Simon
C. Pehlevan
43
2
0
06 Oct 2024
From Lazy to Rich: Exact Learning Dynamics in Deep Linear Networks
Clémentine Dominé
Nicolas Anguita
A. Proca
Lukas Braun
D. Kunin
P. Mediano
Andrew M. Saxe
30
3
0
22 Sep 2024
Learning Multi-Index Models with Neural Networks via Mean-Field Langevin Dynamics
Alireza Mousavi-Hosseini
Denny Wu
Murat A. Erdogdu
MLT
AI4CE
27
6
0
14 Aug 2024
Equidistribution-based training of Free Knot Splines and ReLU Neural Networks
Simone Appella
S. Arridge
Chris Budd
Teo Deveney
L. Kreusser
33
0
0
02 Jul 2024
Symmetries in Overparametrized Neural Networks: A Mean-Field View
Javier Maass Martínez
Joaquin Fontbona
FedML
MLT
29
2
0
30 May 2024
Repetita Iuvant: Data Repetition Allows SGD to Learn High-Dimensional Multi-Index Functions
Luca Arnaboldi
Yatin Dandi
Florent Krzakala
Luca Pesce
Ludovic Stephan
61
12
0
24 May 2024
Understanding Optimal Feature Transfer via a Fine-Grained Bias-Variance Analysis
Yufan Li
Subhabrata Sen
Ben Adlam
MLT
41
1
0
18 Apr 2024
Convergence analysis of controlled particle systems arising in deep learning: from finite to infinite sample size
Huafu Liao
Alpár R. Mészáros
Chenchen Mou
Chao Zhou
21
2
0
08 Apr 2024
How does promoting the minority fraction affect generalization? A theoretical study of the one-hidden-layer neural network on group imbalance
Hongkang Li
Shuai Zhang
Yihua Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
33
4
0
12 Mar 2024
Data Reconstruction Attacks and Defenses: A Systematic Evaluation
Sheng Liu
Zihan Wang
Yuxiao Chen
Qi Lei
AAML
MIACV
59
4
0
13 Feb 2024
The boundary of neural network trainability is fractal
Jascha Narain Sohl-Dickstein
24
8
0
09 Feb 2024
Mean-field underdamped Langevin dynamics and its spacetime discretization
Qiang Fu
Ashia Wilson
32
4
0
26 Dec 2023
Distributed Constrained Combinatorial Optimization leveraging Hypergraph Neural Networks
Nasimeh Heydaribeni
Xinrui Zhan
Ruisi Zhang
Tina Eliassi-Rad
F. Koushanfar
AI4CE
27
8
0
15 Nov 2023
Accelerating optimization over the space of probability measures
Shi Chen
Wenxuan Wu
Yuhang Yao
Stephen J. Wright
16
4
0
06 Oct 2023
Fundamental Limits of Deep Learning-Based Binary Classifiers Trained with Hinge Loss
T. Getu
Georges Kaddoum
M. Bennis
32
1
0
13 Sep 2023
Gradient-Based Feature Learning under Structured Data
Alireza Mousavi-Hosseini
Denny Wu
Taiji Suzuki
Murat A. Erdogdu
MLT
32
18
0
07 Sep 2023
Kernel Limit of Recurrent Neural Networks Trained on Ergodic Data Sequences
Samuel Chun-Hei Lam
Justin A. Sirignano
K. Spiliopoulos
14
2
0
28 Aug 2023
Nonlinear Hamiltonian Monte Carlo & its Particle Approximation
Nawaf Bou-Rabee
Katharina Schuh
18
7
0
22 Aug 2023
Quantitative CLTs in Deep Neural Networks
Stefano Favaro
Boris Hanin
Domenico Marinucci
I. Nourdin
G. Peccati
BDL
23
11
0
12 Jul 2023
The RL Perceptron: Generalisation Dynamics of Policy Learning in High Dimensions
Nishil Patel
Sebastian Lee
Stefano Sarao Mannelli
Sebastian Goldt
Adrew Saxe
OffRL
20
3
0
17 Jun 2023
Generalization Guarantees of Gradient Descent for Multi-Layer Neural Networks
Puyu Wang
Yunwen Lei
Di Wang
Yiming Ying
Ding-Xuan Zhou
MLT
22
3
0
26 May 2023
High-dimensional scaling limits and fluctuations of online least-squares SGD with smooth covariance
Krishnakumar Balasubramanian
Promit Ghosal
Ye He
28
5
0
03 Apr 2023
Doubly Regularized Entropic Wasserstein Barycenters
Lénaïc Chizat
13
11
0
21 Mar 2023
Global Optimality of Elman-type RNN in the Mean-Field Regime
Andrea Agazzi
Jian-Xiong Lu
Sayan Mukherjee
MLT
20
1
0
12 Mar 2023
Phase Diagram of Initial Condensation for Two-layer Neural Networks
Zheng Chen
Yuqing Li
Tao Luo
Zhaoguang Zhou
Z. Xu
MLT
AI4CE
41
8
0
12 Mar 2023
Critical Points and Convergence Analysis of Generative Deep Linear Networks Trained with Bures-Wasserstein Loss
Pierre Bréchet
Katerina Papagiannouli
Jing An
Guido Montúfar
18
3
0
06 Mar 2023
Primal and Dual Analysis of Entropic Fictitious Play for Finite-sum Problems
Atsushi Nitanda
Kazusato Oko
Denny Wu
Nobuhito Takenouchi
Taiji Suzuki
24
3
0
06 Mar 2023
Learning time-scales in two-layers neural networks
Raphael Berthier
Andrea Montanari
Kangjie Zhou
36
33
0
28 Feb 2023
Stochastic Modified Flows, Mean-Field Limits and Dynamics of Stochastic Gradient Descent
Benjamin Gess
Sebastian Kassing
Vitalii Konarovskyi
DiffM
24
6
0
14 Feb 2023
From high-dimensional & mean-field dynamics to dimensionless ODEs: A unifying approach to SGD in two-layers networks
Luca Arnaboldi
Ludovic Stephan
Florent Krzakala
Bruno Loureiro
MLT
30
31
0
12 Feb 2023
Over-parameterised Shallow Neural Networks with Asymmetrical Node Scaling: Global Convergence Guarantees and Feature Learning
François Caron
Fadhel Ayed
Paul Jung
Hoileong Lee
Juho Lee
Hongseok Yang
59
2
0
02 Feb 2023
Dissecting the Effects of SGD Noise in Distinct Regimes of Deep Learning
Antonio Sclocchi
Mario Geiger
M. Wyart
32
6
0
31 Jan 2023
Generalization on the Unseen, Logic Reasoning and Degree Curriculum
Emmanuel Abbe
Samy Bengio
Aryo Lotfi
Kevin Rizk
LRM
28
47
0
30 Jan 2023
Learning Gaussian Mixtures Using the Wasserstein-Fisher-Rao Gradient Flow
Yuling Yan
Kaizheng Wang
Philippe Rigollet
39
20
0
04 Jan 2023
An Analysis of Attention via the Lens of Exchangeability and Latent Variable Models
Yufeng Zhang
Boyi Liu
Qi Cai
Lingxiao Wang
Zhaoran Wang
45
11
0
30 Dec 2022
The Underlying Correlated Dynamics in Neural Training
Rotem Turjeman
Tom Berkov
I. Cohen
Guy Gilboa
19
3
0
18 Dec 2022
Uniform-in-time propagation of chaos for mean field Langevin dynamics
Fan Chen
Zhenjie Ren
Song-bo Wang
43
30
0
06 Dec 2022
Infinite-width limit of deep linear neural networks
Lénaïc Chizat
Maria Colombo
Xavier Fernández-Real
Alessio Figalli
31
14
0
29 Nov 2022
1
2
3
4
Next