ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1804.06561
  4. Cited By
A Mean Field View of the Landscape of Two-Layers Neural Networks

A Mean Field View of the Landscape of Two-Layers Neural Networks

18 April 2018
Song Mei
Andrea Montanari
Phan-Minh Nguyen
    MLT
ArXivPDFHTML

Papers citing "A Mean Field View of the Landscape of Two-Layers Neural Networks"

50 / 174 papers shown
Title
REPAIR: REnormalizing Permuted Activations for Interpolation Repair
REPAIR: REnormalizing Permuted Activations for Interpolation Repair
Keller Jordan
Hanie Sedghi
O. Saukh
R. Entezari
Behnam Neyshabur
MoMe
46
94
0
15 Nov 2022
Stochastic Mirror Descent in Average Ensemble Models
Stochastic Mirror Descent in Average Ensemble Models
Taylan Kargin
Fariborz Salehi
B. Hassibi
11
1
0
27 Oct 2022
Proximal Mean Field Learning in Shallow Neural Networks
Proximal Mean Field Learning in Shallow Neural Networks
Alexis M. H. Teter
Iman Nodozi
A. Halder
FedML
35
1
0
25 Oct 2022
Global Convergence of SGD On Two Layer Neural Nets
Global Convergence of SGD On Two Layer Neural Nets
Pulkit Gopalani
Anirbit Mukherjee
18
5
0
20 Oct 2022
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity
  of Neural Networks
Wasserstein Barycenter-based Model Fusion and Linear Mode Connectivity of Neural Networks
A. K. Akash
Sixu Li
Nicolas García Trillos
24
12
0
13 Oct 2022
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Annihilation of Spurious Minima in Two-Layer ReLU Networks
Yossi Arjevani
M. Field
16
8
0
12 Oct 2022
Meta-Principled Family of Hyperparameter Scaling Strategies
Meta-Principled Family of Hyperparameter Scaling Strategies
Sho Yaida
50
16
0
10 Oct 2022
Analysis of the rate of convergence of an over-parametrized deep neural
  network estimate learned by gradient descent
Analysis of the rate of convergence of an over-parametrized deep neural network estimate learned by gradient descent
Michael Kohler
A. Krzyżak
21
10
0
04 Oct 2022
Lazy vs hasty: linearization in deep networks impacts learning schedule
  based on example difficulty
Lazy vs hasty: linearization in deep networks impacts learning schedule based on example difficulty
Thomas George
Guillaume Lajoie
A. Baratin
18
5
0
19 Sep 2022
Robustness in deep learning: The good (width), the bad (depth), and the
  ugly (initialization)
Robustness in deep learning: The good (width), the bad (depth), and the ugly (initialization)
Zhenyu Zhu
Fanghui Liu
Grigorios G. Chrysos
V. Cevher
37
19
0
15 Sep 2022
Git Re-Basin: Merging Models modulo Permutation Symmetries
Git Re-Basin: Merging Models modulo Permutation Symmetries
Samuel K. Ainsworth
J. Hayase
S. Srinivasa
MoMe
243
313
0
11 Sep 2022
On the universal consistency of an over-parametrized deep neural network
  estimate learned by gradient descent
On the universal consistency of an over-parametrized deep neural network estimate learned by gradient descent
Selina Drews
Michael Kohler
17
13
0
30 Aug 2022
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
The Neural Race Reduction: Dynamics of Abstraction in Gated Networks
Andrew M. Saxe
Shagun Sodhani
Sam Lewallen
AI4CE
28
34
0
21 Jul 2022
Neural Networks can Learn Representations with Gradient Descent
Neural Networks can Learn Representations with Gradient Descent
Alexandru Damian
Jason D. Lee
Mahdi Soltanolkotabi
SSL
MLT
14
112
0
30 Jun 2022
Learning sparse features can lead to overfitting in neural networks
Learning sparse features can lead to overfitting in neural networks
Leonardo Petrini
Francesco Cagnetta
Eric Vanden-Eijnden
M. Wyart
MLT
25
23
0
24 Jun 2022
Label noise (stochastic) gradient descent implicitly solves the Lasso
  for quadratic parametrisation
Label noise (stochastic) gradient descent implicitly solves the Lasso for quadratic parametrisation
Loucas Pillaud-Vivien
J. Reygner
Nicolas Flammarion
NoLa
31
31
0
20 Jun 2022
Unbiased Estimation using Underdamped Langevin Dynamics
Unbiased Estimation using Underdamped Langevin Dynamics
Hamza Ruzayqat
Neil K. Chada
Ajay Jasra
29
4
0
14 Jun 2022
High-dimensional limit theorems for SGD: Effective dynamics and critical
  scaling
High-dimensional limit theorems for SGD: Effective dynamics and critical scaling
Gerard Ben Arous
Reza Gheissari
Aukosh Jagannath
43
59
0
08 Jun 2022
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide
  Neural Networks
Self-Consistent Dynamical Field Theory of Kernel Evolution in Wide Neural Networks
Blake Bordelon
C. Pehlevan
MLT
24
79
0
19 May 2022
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Mean-Field Nonparametric Estimation of Interacting Particle Systems
Rentian Yao
Xiaohui Chen
Yun Yang
43
9
0
16 May 2022
Trajectory Inference via Mean-field Langevin in Path Space
Trajectory Inference via Mean-field Langevin in Path Space
Lénaïc Chizat
Stephen X. Zhang
Matthieu Heitz
Geoffrey Schiebinger
18
20
0
14 May 2022
High-dimensional Asymptotics of Feature Learning: How One Gradient Step
  Improves the Representation
High-dimensional Asymptotics of Feature Learning: How One Gradient Step Improves the Representation
Jimmy Ba
Murat A. Erdogdu
Taiji Suzuki
Zhichao Wang
Denny Wu
Greg Yang
MLT
29
121
0
03 May 2022
On the (Non-)Robustness of Two-Layer Neural Networks in Different
  Learning Regimes
On the (Non-)Robustness of Two-Layer Neural Networks in Different Learning Regimes
Elvis Dohmatob
A. Bietti
AAML
21
13
0
22 Mar 2022
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet
  Transform based on Helgason-Fourier Analysis
Fully-Connected Network on Noncompact Symmetric Space and Ridgelet Transform based on Helgason-Fourier Analysis
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
13
15
0
03 Mar 2022
A blob method for inhomogeneous diffusion with applications to
  multi-agent control and sampling
A blob method for inhomogeneous diffusion with applications to multi-agent control and sampling
Katy Craig
Karthik Elamvazhuthi
M. Haberland
O. Turanova
25
15
0
25 Feb 2022
Provably convergent quasistatic dynamics for mean-field two-player
  zero-sum games
Provably convergent quasistatic dynamics for mean-field two-player zero-sum games
Chao Ma
Lexing Ying
MLT
19
11
0
15 Feb 2022
Random Feature Amplification: Feature Learning and Generalization in
  Neural Networks
Random Feature Amplification: Feature Learning and Generalization in Neural Networks
Spencer Frei
Niladri S. Chatterji
Peter L. Bartlett
MLT
30
29
0
15 Feb 2022
Simultaneous Transport Evolution for Minimax Equilibria on Measures
Carles Domingo-Enrich
Joan Bruna
6
3
0
14 Feb 2022
Phase diagram of Stochastic Gradient Descent in high-dimensional
  two-layer neural networks
Phase diagram of Stochastic Gradient Descent in high-dimensional two-layer neural networks
R. Veiga
Ludovic Stephan
Bruno Loureiro
Florent Krzakala
Lenka Zdeborová
MLT
10
31
0
01 Feb 2022
Improved Overparametrization Bounds for Global Convergence of Stochastic
  Gradient Descent for Shallow Neural Networks
Improved Overparametrization Bounds for Global Convergence of Stochastic Gradient Descent for Shallow Neural Networks
Bartlomiej Polaczyk
J. Cyranka
ODL
28
3
0
28 Jan 2022
Convex Analysis of the Mean Field Langevin Dynamics
Convex Analysis of the Mean Field Langevin Dynamics
Atsushi Nitanda
Denny Wu
Taiji Suzuki
MLT
59
64
0
25 Jan 2022
Overview frequency principle/spectral bias in deep learning
Overview frequency principle/spectral bias in deep learning
Z. Xu
Yaoyu Zhang
Tao Luo
FaML
25
65
0
19 Jan 2022
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural
  Network Approximation in the Mean-Field Regime
Convergence of Policy Gradient for Entropy Regularized MDPs with Neural Network Approximation in the Mean-Field Regime
B. Kerimkulov
J. Leahy
David Siska
Lukasz Szpruch
22
11
0
18 Jan 2022
Neural Capacitance: A New Perspective of Neural Network Selection via
  Edge Dynamics
Neural Capacitance: A New Perspective of Neural Network Selection via Edge Dynamics
Chunheng Jiang
Tejaswini Pedapati
Pin-Yu Chen
Yizhou Sun
Jianxi Gao
16
2
0
11 Jan 2022
Separation of Scales and a Thermodynamic Description of Feature Learning
  in Some CNNs
Separation of Scales and a Thermodynamic Description of Feature Learning in Some CNNs
Inbar Seroussi
Gadi Naveh
Z. Ringel
25
49
0
31 Dec 2021
DNN gradient lossless compression: Can GenNorm be the answer?
DNN gradient lossless compression: Can GenNorm be the answer?
Zhongzhu Chen
Eduin E. Hernandez
Yu-Chih Huang
Stefano Rini
9
9
0
15 Nov 2021
Efficient Neural Network Training via Forward and Backward Propagation
  Sparsification
Efficient Neural Network Training via Forward and Backward Propagation Sparsification
Xiao Zhou
Weizhong Zhang
Zonghao Chen
Shizhe Diao
Tong Zhang
24
46
0
10 Nov 2021
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
Mean-field Analysis of Piecewise Linear Solutions for Wide ReLU Networks
A. Shevchenko
Vyacheslav Kungurtsev
Marco Mondelli
MLT
25
13
0
03 Nov 2021
Sinkformers: Transformers with Doubly Stochastic Attention
Sinkformers: Transformers with Doubly Stochastic Attention
Michael E. Sander
Pierre Ablin
Mathieu Blondel
Gabriel Peyré
18
76
0
22 Oct 2021
The Convex Geometry of Backpropagation: Neural Network Gradient Flows
  Converge to Extreme Points of the Dual Convex Program
The Convex Geometry of Backpropagation: Neural Network Gradient Flows Converge to Extreme Points of the Dual Convex Program
Yifei Wang
Mert Pilanci
MLT
MDE
47
11
0
13 Oct 2021
Parallel Deep Neural Networks Have Zero Duality Gap
Parallel Deep Neural Networks Have Zero Duality Gap
Yifei Wang
Tolga Ergen
Mert Pilanci
71
10
0
13 Oct 2021
The Role of Permutation Invariance in Linear Mode Connectivity of Neural
  Networks
The Role of Permutation Invariance in Linear Mode Connectivity of Neural Networks
R. Entezari
Hanie Sedghi
O. Saukh
Behnam Neyshabur
MoMe
35
215
0
12 Oct 2021
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix
  Completion
AIR-Net: Adaptive and Implicit Regularization Neural Network for Matrix Completion
Zhemin Li
Tao Sun
Hongxia Wang
Bao Wang
42
6
0
12 Oct 2021
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity
  on Pruned Neural Networks
Why Lottery Ticket Wins? A Theoretical Perspective of Sample Complexity on Pruned Neural Networks
Shuai Zhang
Meng Wang
Sijia Liu
Pin-Yu Chen
Jinjun Xiong
UQCV
MLT
13
13
0
12 Oct 2021
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Tighter Sparse Approximation Bounds for ReLU Neural Networks
Carles Domingo-Enrich
Youssef Mroueh
89
4
0
07 Oct 2021
On the Global Convergence of Gradient Descent for multi-layer ResNets in
  the mean-field regime
On the Global Convergence of Gradient Descent for multi-layer ResNets in the mean-field regime
Zhiyan Ding
Shi Chen
Qin Li
S. Wright
MLT
AI4CE
30
11
0
06 Oct 2021
The emergence of a concept in shallow neural networks
The emergence of a concept in shallow neural networks
E. Agliari
Francesco Alemanno
Adriano Barra
G. D. Marzo
18
39
0
01 Sep 2021
The loss landscape of deep linear neural networks: a second-order
  analysis
The loss landscape of deep linear neural networks: a second-order analysis
E. M. Achour
Franccois Malgouyres
Sébastien Gerchinovitz
ODL
22
9
0
28 Jul 2021
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural
  Networks: A Tale of Symmetry II
Analytic Study of Families of Spurious Minima in Two-Layer ReLU Neural Networks: A Tale of Symmetry II
Yossi Arjevani
M. Field
28
18
0
21 Jul 2021
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations,
  and Anomalous Diffusion
The Limiting Dynamics of SGD: Modified Loss, Phase Space Oscillations, and Anomalous Diffusion
D. Kunin
Javier Sagastuy-Breña
Lauren Gillespie
Eshed Margalit
Hidenori Tanaka
Surya Ganguli
Daniel L. K. Yamins
28
15
0
19 Jul 2021
Previous
1234
Next