ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1805.08306
  4. Cited By
Deep Energy Estimator Networks

Deep Energy Estimator Networks

21 May 2018
Saeed Saremi
Arash Mehrjou
Bernhard Schölkopf
Aapo Hyvarinen
ArXivPDFHTML

Papers citing "Deep Energy Estimator Networks"

12 / 12 papers shown
Title
A new method for parameter estimation in probabilistic models: Minimum
  probability flow
A new method for parameter estimation in probabilistic models: Minimum probability flow
Jascha Narain Sohl-Dickstein
P. Battaglino
M. DeWeese
23
58
0
17 Jul 2020
Decision-Making with Auto-Encoding Variational Bayes
Decision-Making with Auto-Encoding Variational Bayes
Romain Lopez
Pierre Boyeau
Nir Yosef
Michael I. Jordan
Jeffrey Regier
BDL
212
10,591
0
17 Feb 2020
Generalizing Hamiltonian Monte Carlo with Neural Networks
Generalizing Hamiltonian Monte Carlo with Neural Networks
Daniel Levy
Matthew D. Hoffman
Jascha Narain Sohl-Dickstein
BDL
51
130
0
25 Nov 2017
Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE
Learning Deep Energy Models: Contrastive Divergence vs. Amortized MLE
Qiang Liu
Dilin Wang
33
22
0
04 Jul 2017
TensorFlow: A system for large-scale machine learning
TensorFlow: A system for large-scale machine learning
Martín Abadi
P. Barham
Jianmin Chen
Zhiwen Chen
Andy Davis
...
Vijay Vasudevan
Pete Warden
Martin Wicke
Yuan Yu
Xiaoqiang Zhang
GNN
AI4CE
338
18,300
0
27 May 2016
Unsupervised Feature Extraction by Time-Contrastive Learning and
  Nonlinear ICA
Unsupervised Feature Extraction by Time-Contrastive Learning and Nonlinear ICA
Aapo Hyvarinen
H. Morioka
CML
OOD
AI4TS
49
404
0
20 May 2016
A note on the evaluation of generative models
A note on the evaluation of generative models
Lucas Theis
Aaron van den Oord
Matthias Bethge
EGVM
74
1,142
0
05 Nov 2015
Adam: A Method for Stochastic Optimization
Adam: A Method for Stochastic Optimization
Diederik P. Kingma
Jimmy Ba
ODL
844
149,474
0
22 Dec 2014
What Regularized Auto-Encoders Learn from the Data Generating
  Distribution
What Regularized Auto-Encoders Learn from the Data Generating Distribution
Guillaume Alain
Yoshua Bengio
OOD
DRL
52
500
0
18 Nov 2012
Estimating the Hessian by Back-propagating Curvature
Estimating the Hessian by Back-propagating Curvature
James Martens
Ilya Sutskever
Kevin Swersky
62
80
0
27 Jun 2012
Representation Learning: A Review and New Perspectives
Representation Learning: A Review and New Perspectives
Yoshua Bengio
Aaron Courville
Pascal Vincent
OOD
SSL
184
12,384
0
24 Jun 2012
Interpretation and Generalization of Score Matching
Interpretation and Generalization of Score Matching
Siwei Lyu
75
143
0
09 May 2012
1