ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.01411
  4. Cited By
FlowNet3D: Learning Scene Flow in 3D Point Clouds

FlowNet3D: Learning Scene Flow in 3D Point Clouds

4 June 2018
Xingyu Liu
C. Qi
Leonidas J. Guibas
    3DPC
ArXivPDFHTML

Papers citing "FlowNet3D: Learning Scene Flow in 3D Point Clouds"

6 / 106 papers shown
Title
Argoverse: 3D Tracking and Forecasting with Rich Maps
Argoverse: 3D Tracking and Forecasting with Rich Maps
Ming-Fang Chang
John Lambert
Patsorn Sangkloy
Jagjeet Singh
Sławomir Bąk
...
De Wang
Peter Carr
Simon Lucey
Deva Ramanan
James Hays
3DPC
67
1,279
0
06 Nov 2019
Sinkhorn Divergences for Unbalanced Optimal Transport
Sinkhorn Divergences for Unbalanced Optimal Transport
Thibault Séjourné
Jean Feydy
Franccois-Xavier Vialard
A. Trouvé
Gabriel Peyré
OT
35
72
0
28 Oct 2019
MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences
MeteorNet: Deep Learning on Dynamic 3D Point Cloud Sequences
Xingyu Liu
Mengyuan Yan
Jeannette Bohg
3DPC
19
191
0
21 Oct 2019
Point-Voxel CNN for Efficient 3D Deep Learning
Point-Voxel CNN for Efficient 3D Deep Learning
Zhijian Liu
Haotian Tang
Chengyue Wu
Song Han
3DPC
67
663
0
08 Jul 2019
HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow
  Estimation on Large-scale Point Clouds
HPLFlowNet: Hierarchical Permutohedral Lattice FlowNet for Scene Flow Estimation on Large-scale Point Clouds
Xiuye Gu
Yijie Wang
Chongruo Wu
Yong Jae Lee
Panqu Wang
3DPC
32
206
0
12 Jun 2019
Learning Video Representations from Correspondence Proposals
Learning Video Representations from Correspondence Proposals
Xingyu Liu
Joon-Young Lee
Hailin Jin
35
63
0
20 May 2019
Previous
123