ResearchTrend.AI
  • Communities
  • Connect sessions
  • AI calendar
  • Organizations
  • Join Slack
  • Contact Sales
Papers
Communities
Social Events
Terms and Conditions
Pricing
Contact Sales
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2026 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.07366
  4. Cited By
Neural Ordinary Differential Equations
v1v2v3v4v5 (latest)

Neural Ordinary Differential Equations

19 June 2018
T. Chen
Yulia Rubanova
J. Bettencourt
David Duvenaud
    AI4CE
ArXiv (abs)PDFHTML

Papers citing "Neural Ordinary Differential Equations"

50 / 3,218 papers shown
Extracting Interpretable Physical Parameters from Spatiotemporal Systems
  using Unsupervised Learning
Extracting Interpretable Physical Parameters from Spatiotemporal Systems using Unsupervised LearningPhysical Review X (PRX), 2019
Peter Y. Lu
Samuel Kim
Marin Soljacic
AI4CE
214
67
0
13 Jul 2019
Time2Vec: Learning a Vector Representation of Time
Time2Vec: Learning a Vector Representation of Time
Seyed Mehran Kazemi
Rishab Goel
Sepehr Eghbali
J. Ramanan
Jaspreet Sahota
Sanjay Thakur
Stella Wu
Cathal Smyth
Pascal Poupart
Marcus A. Brubaker
AI4TS
251
429
0
11 Jul 2019
Spatiotemporal Local Propagation
Spatiotemporal Local Propagation
Alessandro Betti
Marco Gori
41
1
0
11 Jul 2019
Dual Dynamic Inference: Enabling More Efficient, Adaptive and
  Controllable Deep Inference
Dual Dynamic Inference: Enabling More Efficient, Adaptive and Controllable Deep InferenceIEEE Journal on Selected Topics in Signal Processing (JSTSP), 2019
Yue Wang
Jianghao Shen
Ting-Kuei Hu
Pengfei Xu
T. Nguyen
Richard Baraniuk
Zinan Lin
Yingyan Lin
205
84
0
10 Jul 2019
Latent ODEs for Irregularly-Sampled Time Series
Latent ODEs for Irregularly-Sampled Time Series
Yulia Rubanova
Ricky T. Q. Chen
David Duvenaud
BDLAI4TS
775
297
0
08 Jul 2019
Learning Latent Dynamics for Partially-Observed Chaotic Systems
Learning Latent Dynamics for Partially-Observed Chaotic SystemsChaos (Chaos), 2019
Said Ouala
Duong Nguyen
Lucas Drumetz
Bertrand Chapron
A. Pascual
F. Collard
L. Gaultier
Ronan Fablet
129
51
0
04 Jul 2019
PointFlow: 3D Point Cloud Generation with Continuous Normalizing Flows
PointFlow: 3D Point Cloud Generation with Continuous Normalizing FlowsIEEE International Conference on Computer Vision (ICCV), 2019
Guandao Yang
Xun Huang
Jinwei Gu
Ming-Yuan Liu
Serge J. Belongie
Bharath Hariharan
3DPC
512
752
0
28 Jun 2019
Neural ODEs as the Deep Limit of ResNets with constant weights
Neural ODEs as the Deep Limit of ResNets with constant weightsAnalysis and Applications (Anal. Appl.), 2019
B. Avelin
K. Nystrom
ODL
278
35
0
28 Jun 2019
Perceptual Generative Autoencoders
Perceptual Generative Autoencoders
Zijun Zhang
Ruixiang Zhang
Zongpeng Li
Yoshua Bengio
Liam Paull
DRLGAN
171
31
0
25 Jun 2019
Efficient and Effective Context-Based Convolutional Entropy Modeling for
  Image Compression
Efficient and Effective Context-Based Convolutional Entropy Modeling for Image CompressionIEEE Transactions on Image Processing (TIP), 2019
Mu Li
Kede Ma
J. You
David C. Zhang
W. Zuo
238
76
0
24 Jun 2019
A Review on Deep Learning in Medical Image Reconstruction
A Review on Deep Learning in Medical Image ReconstructionJournal of the Operations Research Society of China (JORSC), 2019
Hai-Miao Zhang
Bin Dong
MedIm
382
148
0
23 Jun 2019
SNODE: Spectral Discretization of Neural ODEs for System Identification
SNODE: Spectral Discretization of Neural ODEs for System IdentificationInternational Conference on Learning Representations (ICLR), 2019
A. Quaglino
Marco Gallieri
Jonathan Masci
Jan Koutník
AI4TS
277
52
0
17 Jun 2019
Normalizing flows for novelty detection in industrial time series data
Normalizing flows for novelty detection in industrial time series data
Maximilian Schmidt
M. Šimic
DRLAI4TSAI4CE
156
26
0
17 Jun 2019
Neural Networks on Groups
Neural Networks on Groups
Stella Biderman
109
1
0
13 Jun 2019
Tackling Climate Change with Machine Learning
Tackling Climate Change with Machine LearningACM Computing Surveys (ACM CSUR), 2019
David Rolnick
P. Donti
L. Kaack
K. Kochanski
Alexandre Lacoste
...
Demis Hassabis
John C. Platt
F. Creutzig
J. Chayes
Yoshua Bengio
AI4ClAI4CE
359
970
0
10 Jun 2019
Neural Spline Flows
Neural Spline FlowsNeural Information Processing Systems (NeurIPS), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
DRL
988
896
0
10 Jun 2019
ANODEV2: A Coupled Neural ODE Evolution Framework
ANODEV2: A Coupled Neural ODE Evolution Framework
Tianjun Zhang
Z. Yao
A. Gholami
Kurt Keutzer
Joseph E. Gonzalez
George Biros
Michael W. Mahoney
172
41
0
10 Jun 2019
Understanding and Improving Transformer From a Multi-Particle Dynamic
  System Point of View
Understanding and Improving Transformer From a Multi-Particle Dynamic System Point of View
Yiping Lu
Zhuohan Li
Di He
Zhiqing Sun
Bin Dong
Tao Qin
Liwei Wang
Tie-Yan Liu
AI4CE
240
203
0
06 Jun 2019
Residual Flows for Invertible Generative Modeling
Residual Flows for Invertible Generative ModelingNeural Information Processing Systems (NeurIPS), 2019
Ricky T. Q. Chen
Jens Behrmann
David Duvenaud
J. Jacobsen
BDLTPMDRL
538
418
0
06 Jun 2019
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust
  and Robust Components in Performance Metric
Understanding Adversarial Behavior of DNNs by Disentangling Non-Robust and Robust Components in Performance Metric
Yujun Shi
B. Liao
Guangyong Chen
Yun-Hai Liu
Ming-Ming Cheng
Jiashi Feng
AAML
112
2
0
06 Jun 2019
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Neural SDE: Stabilizing Neural ODE Networks with Stochastic Noise
Xuanqing Liu
Tesi Xiao
Si Si
Qin Cao
Sanjiv Kumar
Cho-Jui Hsieh
209
158
0
05 Jun 2019
Cubic-Spline Flows
Cubic-Spline FlowsInternational Conference on Machine Learning (ICML), 2019
Conor Durkan
Artur Bekasov
Iain Murray
George Papamakarios
TPM
177
62
0
05 Jun 2019
Learning Deep Transformer Models for Machine Translation
Learning Deep Transformer Models for Machine TranslationAnnual Meeting of the Association for Computational Linguistics (ACL), 2019
Qiang Wang
Bei Li
Tong Xiao
Jingbo Zhu
Changliang Li
Yang Li
Lidia S. Chao
226
736
0
05 Jun 2019
Hamiltonian Neural Networks
Hamiltonian Neural NetworksNeural Information Processing Systems (NeurIPS), 2019
S. Greydanus
Misko Dzamba
J. Yosinski
PINNAI4CE
675
1,052
0
04 Jun 2019
Optimal Unsupervised Domain Translation
Optimal Unsupervised Domain Translation
Emmanuel de Bézenac
Ibrahim Ayed
Patrick Gallinari
OT
116
19
0
04 Jun 2019
Gated recurrent units viewed through the lens of continuous time
  dynamical systems
Gated recurrent units viewed through the lens of continuous time dynamical systemsFrontiers in Computational Neuroscience (Front. Comput. Neurosci.), 2019
I. Jordan
Piotr A. Sokól
Il Memming Park
200
62
0
03 Jun 2019
Discovering Neural Wirings
Discovering Neural WiringsNeural Information Processing Systems (NeurIPS), 2019
Mitchell Wortsman
Ali Farhadi
Mohammad Rastegari
AI4CE
516
128
0
03 Jun 2019
Region-specific Diffeomorphic Metric Mapping
Region-specific Diffeomorphic Metric MappingNeural Information Processing Systems (NeurIPS), 2019
Zhengyang Shen
Franccois-Xavier Vialard
Marc Niethammer
193
50
0
01 Jun 2019
Greedy inference with structure-exploiting lazy maps
Greedy inference with structure-exploiting lazy maps
Michael C. Brennan
Daniele Bigoni
O. Zahm
Alessio Spantini
Youssef Marzouk
347
13
0
31 May 2019
Structured Output Learning with Conditional Generative Flows
Structured Output Learning with Conditional Generative FlowsAAAI Conference on Artificial Intelligence (AAAI), 2019
You Lu
Bert Huang
BDLDRL
185
80
0
30 May 2019
Factorized Inference in Deep Markov Models for Incomplete Multimodal
  Time Series
Factorized Inference in Deep Markov Models for Incomplete Multimodal Time SeriesAAAI Conference on Artificial Intelligence (AAAI), 2019
Zhi-Xuan Tan
Harold Soh
Desmond C. Ong
AI4TS
183
30
0
30 May 2019
Monotonic Gaussian Process Flow
Monotonic Gaussian Process FlowInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Ivan Ustyuzhaninov
Ieva Kazlauskaite
Carl Henrik Ek
Neill D. F. Campbell
168
14
0
30 May 2019
AlignFlow: Cycle Consistent Learning from Multiple Domains via
  Normalizing Flows
AlignFlow: Cycle Consistent Learning from Multiple Domains via Normalizing FlowsAAAI Conference on Artificial Intelligence (AAAI), 2019
Aditya Grover
Christopher Chute
Rui Shu
Zhangjie Cao
Stefano Ermon
OODDRL
179
70
0
30 May 2019
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time series
GRU-ODE-Bayes: Continuous modeling of sporadically-observed time seriesNeural Information Processing Systems (NeurIPS), 2019
E. Brouwer
Jaak Simm
Adam Arany
Yves Moreau
SyDaCMLAI4TS
321
349
0
29 May 2019
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear
  Dynamical Systems
Efficient Amortised Bayesian Inference for Hierarchical and Nonlinear Dynamical SystemsInternational Conference on Machine Learning (ICML), 2019
Geoffrey Roeder
Paul K. Grant
Andrew Phillips
Neil Dalchau
Edward Meeds
280
24
0
28 May 2019
Learning Dynamics of Attention: Human Prior for Interpretable Machine
  Reasoning
Learning Dynamics of Attention: Human Prior for Interpretable Machine ReasoningNeural Information Processing Systems (NeurIPS), 2019
Wonjae Kim
Yoonho Lee
219
6
0
28 May 2019
Differentiable Algorithm Networks for Composable Robot Learning
Differentiable Algorithm Networks for Composable Robot Learning
Peter Karkus
Xiao Ma
David Hsu
L. Kaelbling
Wee Sun Lee
Tomas Lozano-Perez
192
72
0
28 May 2019
Validation of Approximate Likelihood and Emulator Models for
  Computationally Intensive Simulations
Validation of Approximate Likelihood and Emulator Models for Computationally Intensive SimulationsInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Niccolò Dalmasso
Ann B. Lee
Rafael Izbicki
T. Pospisil
Ilmun Kim
Chieh-An Lin
206
9
0
27 May 2019
Representation Learning for Dynamic Graphs: A Survey
Representation Learning for Dynamic Graphs: A SurveyJournal of machine learning research (JMLR), 2019
Seyed Mehran Kazemi
Rishab Goel
Kshitij Jain
I. Kobyzev
Akshay Sethi
Peter Forsyth
Pascal Poupart
AI4TSAI4CEGNN
308
543
0
27 May 2019
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation
  from Video
Physics-as-Inverse-Graphics: Unsupervised Physical Parameter Estimation from VideoInternational Conference on Learning Representations (ICLR), 2019
Miguel Jaques
Michael G. Burke
Timothy M. Hospedales
VGenPINN
213
54
0
27 May 2019
Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep
  Reinforcement Learning
Learning to Discretize: Solving 1D Scalar Conservation Laws via Deep Reinforcement LearningCommunications in Computational Physics (Commun. Comput. Phys.), 2019
Yufei Wang
Ziju Shen
Zichao Long
Bin Dong
AI4CEPINN
244
46
0
27 May 2019
Machine Learning for Fluid Mechanics
Machine Learning for Fluid MechanicsAnnual Review of Fluid Mechanics (ARFM), 2019
Steven Brunton
B. R. Noack
Petros Koumoutsakos
AI4CEPINN
251
2,462
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Infinitely deep neural networks as diffusion processesInternational Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Stefano Peluchetti
Stefano Favaro
ODL
229
34
0
27 May 2019
ODE$^2$VAE: Deep generative second order ODEs with Bayesian neural
  networks
ODE2^22VAE: Deep generative second order ODEs with Bayesian neural networksNeural Information Processing Systems (NeurIPS), 2019
Çağatay Yıldız
Markus Heinonen
Harri Lähdesmäki
BDLDRL
343
85
0
27 May 2019
Fully Hyperbolic Convolutional Neural Networks
Fully Hyperbolic Convolutional Neural NetworksResearch in the Mathematical Sciences (RMS), 2019
Keegan Lensink
Bas Peters
E. Haber
MedIm
210
24
0
24 May 2019
Robust learning with implicit residual networks
Robust learning with implicit residual networksMachine Learning and Knowledge Extraction (MLKE), 2019
Viktor Reshniak
Clayton Webster
OOD
309
23
0
24 May 2019
Neural Jump Stochastic Differential Equations
Neural Jump Stochastic Differential EquationsNeural Information Processing Systems (NeurIPS), 2019
Junteng Jia
Austin R. Benson
BDL
462
253
0
24 May 2019
Training Decision Trees as Replacement for Convolution Layers
Training Decision Trees as Replacement for Convolution LayersAAAI Conference on Artificial Intelligence (AAAI), 2019
Wolfgang Fuhl
Gjergji Kasneci
W. Rosenstiel
Enkelejda Kasneci
238
20
0
24 May 2019
Neural ODEs with stochastic vector field mixtures
Neural ODEs with stochastic vector field mixturesEuropean Conference on Artificial Intelligence (ECAI), 2019
Niall Twomey
Michał Kozłowski
Raúl Santos-Rodríguez
92
4
0
23 May 2019
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in
  the Diffusion Limit
Neural Stochastic Differential Equations: Deep Latent Gaussian Models in the Diffusion Limit
Belinda Tzen
Maxim Raginsky
DiffM
424
239
0
23 May 2019
Previous
123...62636465
Next