Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 2,148 papers shown
Title
Scaling Limit of Neural Networks with the Xavier Initialization and Convergence to a Global Minimum
Justin A. Sirignano
K. Spiliopoulos
11
14
0
09 Jul 2019
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
23
55
0
05 Jul 2019
On Symmetry and Initialization for Neural Networks
Ido Nachum
Amir Yehudayoff
MLT
20
5
0
01 Jul 2019
Benign Overfitting in Linear Regression
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
6
762
0
26 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
22
108
0
25 Jun 2019
Limitations of Lazy Training of Two-layers Neural Networks
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
16
143
0
21 Jun 2019
The Functional Neural Process
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
38
77
0
19 Jun 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
M. Wyart
15
17
0
19 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
J. Lee
AAML
13
107
0
19 Jun 2019
Gradient Dynamics of Shallow Univariate ReLU Networks
Francis Williams
Matthew Trager
Claudio Silva
Daniele Panozzo
Denis Zorin
Joan Bruna
11
78
0
18 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
19
140
0
18 Jun 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
16
39
0
16 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
Kaifeng Lyu
Jian Li
43
321
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
J. Lee
Daniel Soudry
Nathan Srebro
19
352
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
19
88
0
12 Jun 2019
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
Orit Malka
Z. Ringel
AI4CE
13
21
0
12 Jun 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Difan Zou
Quanquan Gu
21
231
0
11 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao-quan Song
Xin Yang
13
91
0
09 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Ryo Karakida
S. Akaho
S. Amari
24
39
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
31
122
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Jalaj Bhandari
Daniel Russo
35
185
0
05 Jun 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Boris Hanin
David Rolnick
8
220
0
03 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
13
14
0
03 Jun 2019
A mean-field limit for certain deep neural networks
Dyego Araújo
R. Oliveira
Daniel Yukimura
AI4CE
11
69
0
01 Jun 2019
Exact Convergence Rates of the Neural Tangent Kernel in the Large Depth Limit
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
16
4
0
31 May 2019
What Can Neural Networks Reason About?
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
27
240
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Yuan Cao
Quanquan Gu
MLT
AI4CE
12
382
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
17
268
0
30 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Marius Kloft
18
5
0
29 May 2019
Geometric Insights into the Convergence of Nonlinear TD Learning
David Brandfonbrener
Joan Bruna
9
15
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
A. Bietti
Julien Mairal
17
252
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
21
57
0
28 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
15
12
0
27 May 2019
Infinitely deep neural networks as diffusion processes
Stefano Peluchetti
Stefano Favaro
ODL
6
31
0
27 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
16
18
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Guodong Zhang
James Martens
Roger C. Grosse
ODL
22
124
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Andrea Agazzi
Jianfeng Lu
6
8
0
27 May 2019
Asymptotic learning curves of kernel methods: empirical data v.s. Teacher-Student paradigm
S. Spigler
Mario Geiger
M. Wyart
14
38
0
26 May 2019
On Learning Over-parameterized Neural Networks: A Functional Approximation Perspective
Lili Su
Pengkun Yang
MLT
14
54
0
26 May 2019
What Can ResNet Learn Efficiently, Going Beyond Kernels?
Zeyuan Allen-Zhu
Yuanzhi Li
24
183
0
24 May 2019
Explicitizing an Implicit Bias of the Frequency Principle in Two-layer Neural Networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
MLT
AI4CE
14
38
0
24 May 2019
Neural Temporal-Difference and Q-Learning Provably Converge to Global Optima
Qi Cai
Zhuoran Yang
Jason D. Lee
Zhaoran Wang
26
29
0
24 May 2019
Gradient Descent can Learn Less Over-parameterized Two-layer Neural Networks on Classification Problems
Atsushi Nitanda
Geoffrey Chinot
Taiji Suzuki
MLT
16
33
0
23 May 2019
A type of generalization error induced by initialization in deep neural networks
Yaoyu Zhang
Zhi-Qin John Xu
Tao Luo
Zheng Ma
9
49
0
19 May 2019
An Information Theoretic Interpretation to Deep Neural Networks
Shao-Lun Huang
Xiangxiang Xu
Lizhong Zheng
G. Wornell
FAtt
22
41
0
16 May 2019
Do Kernel and Neural Embeddings Help in Training and Generalization?
Arman Rahbar
Emilio Jorge
Devdatt Dubhashi
Morteza Haghir Chehreghani
MLT
8
0
0
13 May 2019
The Effect of Network Width on Stochastic Gradient Descent and Generalization: an Empirical Study
Daniel S. Park
Jascha Narain Sohl-Dickstein
Quoc V. Le
Samuel L. Smith
22
57
0
09 May 2019
Data-dependent Sample Complexity of Deep Neural Networks via Lipschitz Augmentation
Colin Wei
Tengyu Ma
17
109
0
09 May 2019
Similarity of Neural Network Representations Revisited
Simon Kornblith
Mohammad Norouzi
Honglak Lee
Geoffrey E. Hinton
32
1,354
0
01 May 2019
Linearized two-layers neural networks in high dimension
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
18
241
0
27 Apr 2019
Previous
1
2
3
...
41
42
43
Next