Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1806.07572
Cited By
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 2,148 papers shown
Title
How Much Over-parameterization Is Sufficient to Learn Deep ReLU Networks?
Zixiang Chen
Yuan Cao
Difan Zou
Quanquan Gu
14
122
0
27 Nov 2019
Benefits of Jointly Training Autoencoders: An Improved Neural Tangent Kernel Analysis
THANH VAN NGUYEN
Raymond K. W. Wong
C. Hegde
16
12
0
27 Nov 2019
Gating Revisited: Deep Multi-layer RNNs That Can Be Trained
Mehmet Özgür Türkoglu
Stefano Dáronco
Jan Dirk Wegner
Konrad Schindler
14
47
0
25 Nov 2019
Neural Networks Learning and Memorization with (almost) no Over-Parameterization
Amit Daniely
8
33
0
22 Nov 2019
Information in Infinite Ensembles of Infinitely-Wide Neural Networks
Ravid Shwartz-Ziv
Alexander A. Alemi
19
21
0
20 Nov 2019
Implicit Regularization and Convergence for Weight Normalization
Xiaoxia Wu
Yan Sun
Tongzheng Ren
Shanshan Wu
Zhiyuan Li
Suriya Gunasekar
Rachel A. Ward
Qiang Liu
20
21
0
18 Nov 2019
Convex Formulation of Overparameterized Deep Neural Networks
Cong Fang
Yihong Gu
Weizhong Zhang
Tong Zhang
29
28
0
18 Nov 2019
Asymptotics of Reinforcement Learning with Neural Networks
Justin A. Sirignano
K. Spiliopoulos
MLT
8
14
0
13 Nov 2019
Neural Contextual Bandits with UCB-based Exploration
Dongruo Zhou
Lihong Li
Quanquan Gu
36
15
0
11 Nov 2019
How Implicit Regularization of ReLU Neural Networks Characterizes the Learned Function -- Part I: the 1-D Case of Two Layers with Random First Layer
Jakob Heiss
Josef Teichmann
Hanna Wutte
MLT
6
5
0
07 Nov 2019
Sub-Optimal Local Minima Exist for Neural Networks with Almost All Non-Linear Activations
Tian Ding
Dawei Li
Ruoyu Sun
8
13
0
04 Nov 2019
Mean-field inference methods for neural networks
Marylou Gabrié
AI4CE
16
33
0
03 Nov 2019
Enhanced Convolutional Neural Tangent Kernels
Zhiyuan Li
Ruosong Wang
Dingli Yu
S. Du
Wei Hu
Ruslan Salakhutdinov
Sanjeev Arora
16
131
0
03 Nov 2019
Gaussian-Spherical Restricted Boltzmann Machines
A. Decelle
Cyril Furtlehner
19
5
0
31 Oct 2019
Tensor Programs I: Wide Feedforward or Recurrent Neural Networks of Any Architecture are Gaussian Processes
Greg Yang
33
190
0
28 Oct 2019
Learning Boolean Circuits with Neural Networks
Eran Malach
Shai Shalev-Shwartz
9
4
0
25 Oct 2019
Multi-scale Deep Neural Networks for Solving High Dimensional PDEs
Wei Cai
Zhi-Qin John Xu
AI4CE
12
38
0
25 Oct 2019
Over Parameterized Two-level Neural Networks Can Learn Near Optimal Feature Representations
Cong Fang
Hanze Dong
Tong Zhang
12
18
0
25 Oct 2019
Neural Spectrum Alignment: Empirical Study
Dmitry Kopitkov
Vadim Indelman
27
14
0
19 Oct 2019
Why bigger is not always better: on finite and infinite neural networks
Laurence Aitchison
175
51
0
17 Oct 2019
The Renyi Gaussian Process: Towards Improved Generalization
Xubo Yue
Raed Al Kontar
101
3
0
15 Oct 2019
Neural tangent kernels, transportation mappings, and universal approximation
Ziwei Ji
Matus Telgarsky
Ruicheng Xian
8
39
0
15 Oct 2019
Pathological spectra of the Fisher information metric and its variants in deep neural networks
Ryo Karakida
S. Akaho
S. Amari
24
27
0
14 Oct 2019
Emergent properties of the local geometry of neural loss landscapes
Stanislav Fort
Surya Ganguli
14
50
0
14 Oct 2019
Large Deviation Analysis of Function Sensitivity in Random Deep Neural Networks
Bo Li
D. Saad
11
12
0
13 Oct 2019
On the expected behaviour of noise regularised deep neural networks as Gaussian processes
Arnu Pretorius
Herman Kamper
Steve Kroon
16
9
0
12 Oct 2019
Harnessing the Power of Infinitely Wide Deep Nets on Small-data Tasks
Sanjeev Arora
S. Du
Zhiyuan Li
Ruslan Salakhutdinov
Ruosong Wang
Dingli Yu
AAML
14
161
0
03 Oct 2019
Beyond Linearization: On Quadratic and Higher-Order Approximation of Wide Neural Networks
Yu Bai
J. Lee
24
116
0
03 Oct 2019
Distillation
≈
\approx
≈
Early Stopping? Harvesting Dark Knowledge Utilizing Anisotropic Information Retrieval For Overparameterized Neural Network
Bin Dong
Jikai Hou
Yiping Lu
Zhihua Zhang
12
40
0
02 Oct 2019
Truth or Backpropaganda? An Empirical Investigation of Deep Learning Theory
Micah Goldblum
Jonas Geiping
Avi Schwarzschild
Michael Moeller
Tom Goldstein
13
32
0
01 Oct 2019
The asymptotic spectrum of the Hessian of DNN throughout training
Arthur Jacot
Franck Gabriel
Clément Hongler
15
34
0
01 Oct 2019
Non-Gaussian processes and neural networks at finite widths
Sho Yaida
8
88
0
30 Sep 2019
Student Specialization in Deep ReLU Networks With Finite Width and Input Dimension
Yuandong Tian
MLT
14
8
0
30 Sep 2019
Overparameterized Neural Networks Implement Associative Memory
Adityanarayanan Radhakrishnan
M. Belkin
Caroline Uhler
BDL
32
71
0
26 Sep 2019
Polylogarithmic width suffices for gradient descent to achieve arbitrarily small test error with shallow ReLU networks
Ziwei Ji
Matus Telgarsky
19
177
0
26 Sep 2019
Mildly Overparametrized Neural Nets can Memorize Training Data Efficiently
Rong Ge
Runzhe Wang
Haoyu Zhao
TDI
18
20
0
26 Sep 2019
Asymptotics of Wide Networks from Feynman Diagrams
Ethan Dyer
Guy Gur-Ari
24
113
0
25 Sep 2019
Dynamics of Deep Neural Networks and Neural Tangent Hierarchy
Jiaoyang Huang
H. Yau
17
146
0
18 Sep 2019
Finite Depth and Width Corrections to the Neural Tangent Kernel
Boris Hanin
Mihai Nica
MDE
22
150
0
13 Sep 2019
Additive function approximation in the brain
K. Harris
12
13
0
05 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
14
236
0
29 Aug 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
19
71
0
28 Aug 2019
On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
Tengyuan Liang
Alexander Rakhlin
Xiyu Zhai
18
29
0
27 Aug 2019
Finite size corrections for neural network Gaussian processes
J. Antognini
BDL
19
29
0
27 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
A. Panigrahi
Abhishek Shetty
Navin Goyal
11
20
0
16 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Song Mei
Andrea Montanari
51
626
0
14 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
27
110
0
24 Jul 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Lénaïc Chizat
21
92
0
24 Jul 2019
Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
Arthur Jacot
Franck Gabriel
François Ged
Clément Hongler
11
23
0
11 Jul 2019
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
Guodong Zhang
Lala Li
Zachary Nado
James Martens
Sushant Sachdeva
George E. Dahl
Christopher J. Shallue
Roger C. Grosse
20
148
0
09 Jul 2019
Previous
1
2
3
...
40
41
42
43
Next