Communities
Connect sessions
AI calendar
Organizations
Join Slack
Contact Sales
Search
Open menu
Home
Papers
1806.07572
Cited By
v1
v2
v3
v4 (latest)
Neural Tangent Kernel: Convergence and Generalization in Neural Networks
20 June 2018
Arthur Jacot
Franck Gabriel
Clément Hongler
Re-assign community
ArXiv (abs)
PDF
HTML
Papers citing
"Neural Tangent Kernel: Convergence and Generalization in Neural Networks"
50 / 2,410 papers shown
Finite Depth and Width Corrections to the Neural Tangent Kernel
International Conference on Learning Representations (ICLR), 2019
Boris Hanin
Mihai Nica
MDE
206
162
0
13 Sep 2019
Additive function approximation in the brain
K. Harris
195
14
0
05 Sep 2019
Neural Policy Gradient Methods: Global Optimality and Rates of Convergence
International Conference on Learning Representations (ICLR), 2019
Lingxiao Wang
Qi Cai
Zhuoran Yang
Zhaoran Wang
459
262
0
29 Aug 2019
Deep Learning Theory Review: An Optimal Control and Dynamical Systems Perspective
Guan-Horng Liu
Evangelos A. Theodorou
AI4CE
290
74
0
28 Aug 2019
On the Multiple Descent of Minimum-Norm Interpolants and Restricted Lower Isometry of Kernels
Tengyuan Liang
Alexander Rakhlin
Xiyu Zhai
171
29
0
27 Aug 2019
Finite size corrections for neural network Gaussian processes
J. Antognini
BDL
387
32
0
27 Aug 2019
Effect of Activation Functions on the Training of Overparametrized Neural Nets
International Conference on Learning Representations (ICLR), 2019
A. Panigrahi
Abhishek Shetty
Navin Goyal
209
23
0
16 Aug 2019
The generalization error of random features regression: Precise asymptotics and double descent curve
Communications on Pure and Applied Mathematics (CPAM), 2019
Song Mei
Andrea Montanari
513
675
0
14 Aug 2019
A Fine-Grained Spectral Perspective on Neural Networks
Greg Yang
Hadi Salman
369
117
0
24 Jul 2019
Sparse Optimization on Measures with Over-parameterized Gradient Descent
Mathematical programming (Math. Program.), 2019
Lénaïc Chizat
189
99
0
24 Jul 2019
Order and Chaos: NTK views on DNN Normalization, Checkerboard and Boundary Artifacts
Arthur Jacot
Franck Gabriel
François Ged
Clément Hongler
133
24
0
11 Jul 2019
Which Algorithmic Choices Matter at Which Batch Sizes? Insights From a Noisy Quadratic Model
Neural Information Processing Systems (NeurIPS), 2019
Guodong Zhang
Lala Li
Zachary Nado
James Martens
Sushant Sachdeva
George E. Dahl
Christopher J. Shallue
Roger C. Grosse
398
176
0
09 Jul 2019
Scaling Limit of Neural Networks with the Xavier Initialization and Convergence to a Global Minimum
Justin A. Sirignano
K. Spiliopoulos
74
15
0
09 Jul 2019
Weight-space symmetry in deep networks gives rise to permutation saddles, connected by equal-loss valleys across the loss landscape
Johanni Brea
Berfin Simsek
Bernd Illing
W. Gerstner
279
65
0
05 Jul 2019
On Symmetry and Initialization for Neural Networks
Latin American Symposium on Theoretical Informatics (LATIN), 2019
Ido Nachum
Amir Yehudayoff
MLT
118
6
0
01 Jul 2019
Benign Overfitting in Linear Regression
Proceedings of the National Academy of Sciences of the United States of America (PNAS), 2019
Peter L. Bartlett
Philip M. Long
Gábor Lugosi
Alexander Tsigler
MLT
405
853
0
26 Jun 2019
Neural Proximal/Trust Region Policy Optimization Attains Globally Optimal Policy
Boyi Liu
Qi Cai
Zhuoran Yang
Zhaoran Wang
299
114
0
25 Jun 2019
Limitations of Lazy Training of Two-layers Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Behrooz Ghorbani
Song Mei
Theodor Misiakiewicz
Andrea Montanari
MLT
186
148
0
21 Jun 2019
The Functional Neural Process
Neural Information Processing Systems (NeurIPS), 2019
Christos Louizos
Xiahan Shi
Klamer Schutte
Max Welling
BDL
218
81
0
19 Jun 2019
Disentangling feature and lazy training in deep neural networks
Mario Geiger
S. Spigler
Arthur Jacot
Matthieu Wyart
242
17
0
19 Jun 2019
Convergence of Adversarial Training in Overparametrized Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Ruiqi Gao
Tianle Cai
Haochuan Li
Liwei Wang
Cho-Jui Hsieh
Jason D. Lee
AAML
300
114
0
19 Jun 2019
Gradient Dynamics of Shallow Univariate ReLU Networks
Neural Information Processing Systems (NeurIPS), 2019
Francis Williams
Matthew Trager
Claudio Silva
Daniele Panozzo
Denis Zorin
Joan Bruna
166
84
0
18 Jun 2019
Dynamics of stochastic gradient descent for two-layer neural networks in the teacher-student setup
Neural Information Processing Systems (NeurIPS), 2019
Sebastian Goldt
Madhu S. Advani
Andrew M. Saxe
Florent Krzakala
Lenka Zdeborová
MLT
323
167
0
18 Jun 2019
Meta-learning Pseudo-differential Operators with Deep Neural Networks
Journal of Computational Physics (JCP), 2019
Jordi Feliu-Fabà
Yuwei Fan
Lexing Ying
242
40
0
16 Jun 2019
Gradient Descent Maximizes the Margin of Homogeneous Neural Networks
International Conference on Learning Representations (ICLR), 2019
Kaifeng Lyu
Jian Li
506
364
0
13 Jun 2019
Kernel and Rich Regimes in Overparametrized Models
Annual Conference Computational Learning Theory (COLT), 2019
Blake E. Woodworth
Suriya Gunasekar
Pedro H. P. Savarese
E. Moroshko
Itay Golan
Jason D. Lee
Daniel Soudry
Nathan Srebro
359
391
0
13 Jun 2019
Generalization Guarantees for Neural Networks via Harnessing the Low-rank Structure of the Jacobian
Samet Oymak
Zalan Fabian
Mingchen Li
Mahdi Soltanolkotabi
MLT
229
100
0
12 Jun 2019
Learning Curves for Deep Neural Networks: A Gaussian Field Theory Perspective
Omry Cohen
Orit Malka
Zohar Ringel
AI4CE
195
24
0
12 Jun 2019
An Improved Analysis of Training Over-parameterized Deep Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Difan Zou
Quanquan Gu
181
245
0
11 Jun 2019
Quadratic Suffices for Over-parametrization via Matrix Chernoff Bound
Zhao Song
Xin Yang
150
96
0
09 Jun 2019
The Normalization Method for Alleviating Pathological Sharpness in Wide Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Ryo Karakida
S. Akaho
S. Amari
140
43
0
07 Jun 2019
Approximate Inference Turns Deep Networks into Gaussian Processes
Neural Information Processing Systems (NeurIPS), 2019
Mohammad Emtiyaz Khan
Alexander Immer
Ehsan Abedi
M. Korzepa
UQCV
BDL
379
130
0
05 Jun 2019
Global Optimality Guarantees For Policy Gradient Methods
Operational Research (OR), 2019
Jalaj Bhandari
Daniel Russo
380
219
0
05 Jun 2019
Deep ReLU Networks Have Surprisingly Few Activation Patterns
Neural Information Processing Systems (NeurIPS), 2019
Boris Hanin
David Rolnick
443
248
0
03 Jun 2019
A Mean Field Theory of Quantized Deep Networks: The Quantization-Depth Trade-Off
Neural Information Processing Systems (NeurIPS), 2019
Yaniv Blumenfeld
D. Gilboa
Daniel Soudry
MQ
193
14
0
03 Jun 2019
A mean-field limit for certain deep neural networks
Dyego Araújo
R. Oliveira
Daniel Yukimura
AI4CE
228
70
0
01 Jun 2019
Exact Convergence Rates of the Neural Tangent Kernel in the Large Depth Limit
Soufiane Hayou
Arnaud Doucet
Judith Rousseau
388
5
0
31 May 2019
What Can Neural Networks Reason About?
International Conference on Learning Representations (ICLR), 2019
Keyulu Xu
Jingling Li
Mozhi Zhang
S. Du
Ken-ichi Kawarabayashi
Stefanie Jegelka
NAI
AI4CE
346
273
0
30 May 2019
Generalization Bounds of Stochastic Gradient Descent for Wide and Deep Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Yuan Cao
Quanquan Gu
MLT
AI4CE
341
415
0
30 May 2019
Graph Neural Tangent Kernel: Fusing Graph Neural Networks with Graph Kernels
Neural Information Processing Systems (NeurIPS), 2019
S. Du
Kangcheng Hou
Barnabás Póczós
Ruslan Salakhutdinov
Ruosong Wang
Keyulu Xu
336
298
0
30 May 2019
Norm-based generalisation bounds for multi-class convolutional neural networks
Antoine Ledent
Waleed Mustafa
Yunwen Lei
Matthias Kirchler
323
5
0
29 May 2019
Geometric Insights into the Convergence of Nonlinear TD Learning
International Conference on Learning Representations (ICLR), 2019
David Brandfonbrener
Joan Bruna
163
18
0
29 May 2019
On the Inductive Bias of Neural Tangent Kernels
Neural Information Processing Systems (NeurIPS), 2019
A. Bietti
Julien Mairal
308
289
0
29 May 2019
Gram-Gauss-Newton Method: Learning Overparameterized Neural Networks for Regression Problems
Tianle Cai
Ruiqi Gao
Jikai Hou
Siyu Chen
Dong Wang
Di He
Zhihua Zhang
Liwei Wang
ODL
180
61
0
28 May 2019
Simple and Effective Regularization Methods for Training on Noisily Labeled Data with Generalization Guarantee
Wei Hu
Zhiyuan Li
Dingli Yu
NoLa
310
12
0
27 May 2019
Infinitely deep neural networks as diffusion processes
International Conference on Artificial Intelligence and Statistics (AISTATS), 2019
Stefano Peluchetti
Stefano Favaro
ODL
228
34
0
27 May 2019
Scalable Training of Inference Networks for Gaussian-Process Models
International Conference on Machine Learning (ICML), 2019
Jiaxin Shi
Mohammad Emtiyaz Khan
Jun Zhu
BDL
115
18
0
27 May 2019
Fast Convergence of Natural Gradient Descent for Overparameterized Neural Networks
Neural Information Processing Systems (NeurIPS), 2019
Guodong Zhang
James Martens
Roger C. Grosse
ODL
278
130
0
27 May 2019
Temporal-difference learning with nonlinear function approximation: lazy training and mean field regimes
Mathematical and Scientific Machine Learning (MSML), 2019
Andrea Agazzi
Jianfeng Lu
333
8
0
27 May 2019
Asymptotic learning curves of kernel methods: empirical data v.s. Teacher-Student paradigm
S. Spigler
Mario Geiger
Matthieu Wyart
201
42
0
26 May 2019
Previous
1
2
3
...
46
47
48
49
Next