ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09231
  4. Cited By
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network

24 June 2018
Risi Kondor
Zhen Lin
Shubhendu Trivedi
ArXivPDFHTML

Papers citing "Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network"

33 / 183 papers shown
Title
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis
3D Solid Spherical Bispectrum CNNs for Biomedical Texture Analysis
Valentin Oreiller
Vincent Andrearczyk
Julien Fageot
John O. Prior
A. Depeursinge
14
1
0
28 Apr 2020
Theoretical Aspects of Group Equivariant Neural Networks
Theoretical Aspects of Group Equivariant Neural Networks
Carlos Esteves
21
41
0
10 Apr 2020
The general theory of permutation equivarant neural networks and higher
  order graph variational encoders
The general theory of permutation equivarant neural networks and higher order graph variational encoders
Erik H. Thiede
Truong Son-Hy
Risi Kondor
24
35
0
08 Apr 2020
ManifoldNorm: Extending normalizations on Riemannian Manifolds
ManifoldNorm: Extending normalizations on Riemannian Manifolds
Rudrasis Chakraborty
16
10
0
30 Mar 2020
Representations of molecules and materials for interpolation of
  quantum-mechanical simulations via machine learning
Representations of molecules and materials for interpolation of quantum-mechanical simulations via machine learning
Marcel F. Langer
Alex Goessmann
M. Rupp
AI4CE
23
92
0
26 Mar 2020
Local Rotation Invariance in 3D CNNs
Local Rotation Invariance in 3D CNNs
Vincent Andrearczyk
Julien Fageot
Valentin Oreiller
X. Montet
A. Depeursinge
37
23
0
19 Mar 2020
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric
  graphs
Gauge Equivariant Mesh CNNs: Anisotropic convolutions on geometric graphs
P. D. Haan
Maurice Weiler
Taco S. Cohen
Max Welling
102
127
0
11 Mar 2020
Directional Message Passing for Molecular Graphs
Directional Message Passing for Molecular Graphs
Johannes Klicpera
Janek Groß
Stephan Günnemann
49
847
0
06 Mar 2020
MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued
  Images With Applications
MVC-Net: A Convolutional Neural Network Architecture for Manifold-Valued Images With Applications
Jose J. Bouza
Chun-Hao Yang
David E Vaillancourt
B. Vemuri
11
4
0
02 Mar 2020
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Quaternion Equivariant Capsule Networks for 3D Point Clouds
Yongheng Zhao
Tolga Birdal
J. E. Lenssen
Emanuele Menegatti
Leonidas J. Guibas
Federico Tombari
3DPC
26
88
0
27 Dec 2019
TeaNet: universal neural network interatomic potential inspired by
  iterative electronic relaxations
TeaNet: universal neural network interatomic potential inspired by iterative electronic relaxations
So Takamoto
S. Izumi
Ju Li
GNN
21
76
0
02 Dec 2019
Representation Learning on Unit Ball with 3D Roto-Translational
  Equivariance
Representation Learning on Unit Ball with 3D Roto-Translational Equivariance
Sameera Ramasinghe
Salman Khan
Nick Barnes
Stephen Gould
13
8
0
30 Nov 2019
General $E(2)$-Equivariant Steerable CNNs
General E(2)E(2)E(2)-Equivariant Steerable CNNs
Maurice Weiler
Gabriele Cesa
31
501
0
19 Nov 2019
Response to NITRD, NCO, NSF Request for Information on "Update to the
  2016 National Artificial Intelligence Research and Development Strategic
  Plan"
Response to NITRD, NCO, NSF Request for Information on "Update to the 2016 National Artificial Intelligence Research and Development Strategic Plan"
J. Amundson
J. Annis
Camille Avestruz
D. Bowring
J. Caldeira
...
N. Tran
S. Trivedi
L. Trouille
W. L. K. Wu
C. Bom
15
11
0
05 Nov 2019
A Group-Theoretic Framework for Data Augmentation
A Group-Theoretic Framework for Data Augmentation
Shuxiao Chen
Edgar Dobriban
Jane Lee
FedML
20
38
0
25 Jul 2019
Cormorant: Covariant Molecular Neural Networks
Cormorant: Covariant Molecular Neural Networks
Brandon M. Anderson
Truong Son-Hy
Risi Kondor
22
421
0
06 Jun 2019
Invariant Feature Coding using Tensor Product Representation
Invariant Feature Coding using Tensor Product Representation
Yusuke Mukuta
Tatsuya Harada
24
0
0
05 Jun 2019
Deep Scale-spaces: Equivariance Over Scale
Deep Scale-spaces: Equivariance Over Scale
Daniel E. Worrall
Max Welling
BDL
13
166
0
28 May 2019
Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
Geometric Wavelet Scattering Networks on Compact Riemannian Manifolds
Michael Perlmutter
Feng Gao
Guy Wolf
M. Hirn
11
13
0
24 May 2019
Learning to Convolve: A Generalized Weight-Tying Approach
Learning to Convolve: A Generalized Weight-Tying Approach
Nichita Diaconu
Daniel E. Worrall
MLT
25
20
0
12 May 2019
Equivariant Multi-View Networks
Equivariant Multi-View Networks
Carlos Esteves
Yinshuang Xu
Christine Allen-Blanchette
Kostas Daniilidis
3DPC
11
98
0
01 Apr 2019
Equivariant Entity-Relationship Networks
Equivariant Entity-Relationship Networks
Devon R. Graham
Junhao Wang
Siamak Ravanbakhsh
11
8
0
21 Mar 2019
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Gauge Equivariant Convolutional Networks and the Icosahedral CNN
Taco S. Cohen
Maurice Weiler
Berkay Kicanaoglu
Max Welling
40
402
0
11 Feb 2019
Surface Networks via General Covers
Surface Networks via General Covers
Niv Haim
Nimrod Segol
Heli Ben-Hamu
Haggai Maron
Y. Lipman
3DPC
19
49
0
27 Dec 2018
A General Theory of Equivariant CNNs on Homogeneous Spaces
A General Theory of Equivariant CNNs on Homogeneous Spaces
Taco S. Cohen
Mario Geiger
Maurice Weiler
MLT
AI4CE
165
308
0
05 Nov 2018
DeepSphere: Efficient spherical Convolutional Neural Network with
  HEALPix sampling for cosmological applications
DeepSphere: Efficient spherical Convolutional Neural Network with HEALPix sampling for cosmological applications
Nathanael Perraudin
M. Defferrard
T. Kacprzak
R. Sgier
20
169
0
29 Oct 2018
DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with
  Deep Neural Networks
DeepCMB: Lensing Reconstruction of the Cosmic Microwave Background with Deep Neural Networks
J. Caldeira
W. L. K. Wu
Brian D. Nord
Camille Avestruz
Shubhendu Trivedi
K. Story
25
63
0
02 Oct 2018
Labeling Panoramas with Spherical Hourglass Networks
Labeling Panoramas with Spherical Hourglass Networks
Carlos Esteves
Kostas Daniilidis
A. Makadia
11
3
0
06 Sep 2018
Discriminative Learning of Similarity and Group Equivariant
  Representations
Discriminative Learning of Similarity and Group Equivariant Representations
Shubhendu Trivedi
21
1
0
30 Aug 2018
3D Steerable CNNs: Learning Rotationally Equivariant Features in
  Volumetric Data
3D Steerable CNNs: Learning Rotationally Equivariant Features in Volumetric Data
Maurice Weiler
Mario Geiger
Max Welling
Wouter Boomsma
Taco S. Cohen
3DPC
45
494
0
06 Jul 2018
Re-evaluating Evaluation
Re-evaluating Evaluation
David Balduzzi
K. Tuyls
Julien Perolat
T. Graepel
MoMe
16
96
0
07 Jun 2018
On the Generalization of Equivariance and Convolution in Neural Networks
  to the Action of Compact Groups
On the Generalization of Equivariance and Convolution in Neural Networks to the Action of Compact Groups
Risi Kondor
Shubhendu Trivedi
MLT
45
487
0
11 Feb 2018
Geometric deep learning on graphs and manifolds using mixture model CNNs
Geometric deep learning on graphs and manifolds using mixture model CNNs
Federico Monti
Davide Boscaini
Jonathan Masci
Emanuele Rodolà
Jan Svoboda
M. Bronstein
GNN
251
1,811
0
25 Nov 2016
Previous
1234