ResearchTrend.AI
  • Papers
  • Communities
  • Events
  • Blog
  • Pricing
Papers
Communities
Social Events
Terms and Conditions
Pricing
Parameter LabParameter LabTwitterGitHubLinkedInBlueskyYoutube

© 2025 ResearchTrend.AI, All rights reserved.

  1. Home
  2. Papers
  3. 1806.09231
  4. Cited By
Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional
  Neural Network

Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network

24 June 2018
Risi Kondor
Zhen Lin
Shubhendu Trivedi
ArXivPDFHTML

Papers citing "Clebsch-Gordan Nets: a Fully Fourier Space Spherical Convolutional Neural Network"

50 / 183 papers shown
Title
Data efficiency and extrapolation trends in neural network interatomic
  potentials
Data efficiency and extrapolation trends in neural network interatomic potentials
Joshua A Vita
Daniel Schwalbe-Koda
34
16
0
12 Feb 2023
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Reducing SO(3) Convolutions to SO(2) for Efficient Equivariant GNNs
Saro Passaro
C. L. Zitnick
3DPC
28
79
0
07 Feb 2023
How Jellyfish Characterise Alternating Group Equivariant Neural Networks
How Jellyfish Characterise Alternating Group Equivariant Neural Networks
Edward Pearce-Crump
21
4
0
24 Jan 2023
Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud
  Analysis
Flattening-Net: Deep Regular 2D Representation for 3D Point Cloud Analysis
Qijian Zhang
Junhui Hou
Y. Qian
Yiming Zeng
Juyong Zhang
Ying He
3DPC
40
24
0
17 Dec 2022
Brauer's Group Equivariant Neural Networks
Brauer's Group Equivariant Neural Networks
Edward Pearce-Crump
AI4CE
13
15
0
16 Dec 2022
Lorentz group equivariant autoencoders
Lorentz group equivariant autoencoders
Zichun Hao
Raghav Kansal
Javier Mauricio Duarte
N. Chernyavskaya
BDL
DRL
AI4CE
23
23
0
14 Dec 2022
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and
  Group Convolution
Equivalence Between SE(3) Equivariant Networks via Steerable Kernels and Group Convolution
A. Poulenard
M. Ovsjanikov
Leonidas J. Guibas
3DPC
30
2
0
29 Nov 2022
Spherical convolutional neural networks can improve brain microstructure
  estimation from diffusion MRI data
Spherical convolutional neural networks can improve brain microstructure estimation from diffusion MRI data
Leevi Kerkelä
K. Seunarine
F. Szczepankiewicz
C. Clark
DiffM
MedIm
20
2
0
17 Nov 2022
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network
  Formalism
Unifying O(3) Equivariant Neural Networks Design with Tensor-Network Formalism
Zimu Li
Zihan Pengmei
Han Zheng
Erik H. Thiede
Junyu Liu
Risi Kondor
27
2
0
14 Nov 2022
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids
  Representations
Rotation-equivariant Graph Neural Networks for Learning Glassy Liquids Representations
F. Pezzicoli
Guillaume Charpiat
François P. Landes
21
6
0
06 Nov 2022
Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations
  in Hamiltonian Formulation
Gauge Equivariant Neural Networks for 2+1D U(1) Gauge Theory Simulations in Hamiltonian Formulation
Di Luo
Shunyue Yuan
J. Stokes
B. Clark
21
14
0
06 Nov 2022
Learning the shape of protein micro-environments with a holographic
  convolutional neural network
Learning the shape of protein micro-environments with a holographic convolutional neural network
Michael N. Pun
Andrew Ivanov
Quinn Bellamy
Zachary Montague
Colin H. LaMont
P. Bradley
J. Otwinowski
Armita Nourmohammad
11
12
0
05 Nov 2022
A tradeoff between universality of equivariant models and learnability
  of symmetries
A tradeoff between universality of equivariant models and learnability of symmetries
Vasco Portilheiro
27
2
0
17 Oct 2022
Theory for Equivariant Quantum Neural Networks
Theory for Equivariant Quantum Neural Networks
Quynh T. Nguyen
Louis Schatzki
Paolo Braccia
Michael Ragone
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
27
88
0
16 Oct 2022
Learnable Polyphase Sampling for Shift Invariant and Equivariant
  Convolutional Networks
Learnable Polyphase Sampling for Shift Invariant and Equivariant Convolutional Networks
Renan A. Rojas-Gomez
Teck-Yian Lim
A. Schwing
Minh Do
Raymond A. Yeh
31
9
0
14 Oct 2022
Representation Theory for Geometric Quantum Machine Learning
Representation Theory for Geometric Quantum Machine Learning
Michael Ragone
Paolo Braccia
Quynh T. Nguyen
Louis Schatzki
Patrick J. Coles
F. Sauvage
Martín Larocca
M. Cerezo
AI4CE
26
73
0
14 Oct 2022
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational)
  Autoencoder in Fourier Space
Holographic-(V)AE: an end-to-end SO(3)-Equivariant (Variational) Autoencoder in Fourier Space
Gian Marco Visani
Michael N. Pun
Arman Angaji
Armita Nourmohammad
BDL
24
3
0
30 Sep 2022
Machine learning and invariant theory
Machine learning and invariant theory
Ben Blum-Smith
Soledad Villar
AI4CE
31
16
0
29 Sep 2022
In Search of Projectively Equivariant Networks
In Search of Projectively Equivariant Networks
Georg Bökman
Axel Flinth
Fredrik Kahl
37
0
0
29 Sep 2022
Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO)
  Convolutions
Scalable and Equivariant Spherical CNNs by Discrete-Continuous (DISCO) Convolutions
Jeremy Ocampo
Matthew Alexander Price
Jason D. McEwen
21
13
0
27 Sep 2022
Learning Invariant Representations for Equivariant Neural Networks Using
  Orthogonal Moments
Learning Invariant Representations for Equivariant Neural Networks Using Orthogonal Moments
Jaspreet Singh
Chandan Singh
14
5
0
22 Sep 2022
Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based
  Single-Atom Alloy Catalysts for CO2 Reduction Reaction
Multi-Task Mixture Density Graph Neural Networks for Predicting Cu-based Single-Atom Alloy Catalysts for CO2 Reduction Reaction
Chen Liang
Bo-Lan Wang
Shaogang Hao
Guangyong Chen
Pheng-Ann Heng
Xiaolong Zou
50
1
0
15 Sep 2022
A Feedforward Unitary Equivariant Neural Network
A Feedforward Unitary Equivariant Neural Network
P. Ma
Terence Chan
26
4
0
25 Aug 2022
PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs
PDO-s3DCNNs: Partial Differential Operator Based Steerable 3D CNNs
Zhengyang Shen
T. Hong
Qi She
Jinwen Ma
Zhouchen Lin
MedIm
11
7
0
07 Aug 2022
Graph neural networks for materials science and chemistry
Graph neural networks for materials science and chemistry
Patrick Reiser
Marlen Neubert
André Eberhard
Luca Torresi
Chen Zhou
...
Houssam Metni
Clint van Hoesel
Henrik Schopmans
T. Sommer
Pascal Friederich
GNN
AI4CE
42
370
0
05 Aug 2022
e3nn: Euclidean Neural Networks
e3nn: Euclidean Neural Networks
Mario Geiger
Tess E. Smidt
35
173
0
18 Jul 2022
Spherical Channels for Modeling Atomic Interactions
Spherical Channels for Modeling Atomic Interactions
C. L. Zitnick
Abhishek Das
Adeesh Kolluru
Janice Lan
Muhammed Shuaibi
Anuroop Sriram
Zachary W. Ulissi
Brandon M. Wood
79
58
0
29 Jun 2022
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic
  Graphs
Equiformer: Equivariant Graph Attention Transformer for 3D Atomistic Graphs
Yi-Lun Liao
Tess E. Smidt
80
213
0
23 Jun 2022
Approximate Equivariance SO(3) Needlet Convolution
Approximate Equivariance SO(3) Needlet Convolution
Kai Yi
Jialin Chen
Yu Guang Wang
Bingxin Zhou
Pietro Lio'
Yanan Fan
J. Hamann
11
4
0
17 Jun 2022
An Algorithm for the SE(3)-Transformation on Neural Implicit Maps for
  Remapping Functions
An Algorithm for the SE(3)-Transformation on Neural Implicit Maps for Remapping Functions
Yijun Yuan
A. Nüchter
18
9
0
17 Jun 2022
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant
  Networks on Homogeneous Spaces
Unified Fourier-based Kernel and Nonlinearity Design for Equivariant Networks on Homogeneous Spaces
Yinshuang Xu
Jiahui Lei
Edgar Dobriban
Kostas Daniilidis
23
19
0
16 Jun 2022
Toward Learning Robust and Invariant Representations with Alignment
  Regularization and Data Augmentation
Toward Learning Robust and Invariant Representations with Alignment Regularization and Data Augmentation
Haohan Wang
Zeyi Huang
Xindi Wu
Eric P. Xing
OOD
19
15
0
04 Jun 2022
Hierarchical Spherical CNNs with Lifting-based Adaptive Wavelets for
  Pooling and Unpooling
Hierarchical Spherical CNNs with Lifting-based Adaptive Wavelets for Pooling and Unpooling
Mingxing Xu
Chenglin Li
Wenrui Dai
Siheng Chen
Junni Zou
P. Frossard
H. Xiong
32
2
0
31 May 2022
Universality of Group Convolutional Neural Networks Based on Ridgelet
  Analysis on Groups
Universality of Group Convolutional Neural Networks Based on Ridgelet Analysis on Groups
Sho Sonoda
Isao Ishikawa
Masahiro Ikeda
30
9
0
30 May 2022
VectorAdam for Rotation Equivariant Geometry Optimization
VectorAdam for Rotation Equivariant Geometry Optimization
Selena Ling
Nicholas Sharp
Alec Jacobson
23
16
0
26 May 2022
VNT-Net: Rotational Invariant Vector Neuron Transformers
VNT-Net: Rotational Invariant Vector Neuron Transformers
Hedi Zisling
Andrei Sharf
3DPC
24
1
0
19 May 2022
What is an equivariant neural network?
What is an equivariant neural network?
Lek-Heng Lim
Bradley J. Nelson
BDL
FedML
MLT
32
22
0
15 May 2022
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Low Dimensional Invariant Embeddings for Universal Geometric Learning
Nadav Dym
S. Gortler
21
39
0
05 May 2022
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Relaxing Equivariance Constraints with Non-stationary Continuous Filters
Tycho F. A. van der Ouderaa
David W. Romero
Mark van der Wilk
24
33
0
14 Apr 2022
Learning Local Equivariant Representations for Large-Scale Atomistic
  Dynamics
Learning Local Equivariant Representations for Large-Scale Atomistic Dynamics
Albert Musaelian
Simon L. Batzner
A. Johansson
Lixin Sun
Cameron J. Owen
M. Kornbluth
Boris Kozinsky
22
425
0
11 Apr 2022
Equivariance Discovery by Learned Parameter-Sharing
Equivariance Discovery by Learned Parameter-Sharing
Raymond A. Yeh
Yuan-Ting Hu
M. Hasegawa-Johnson
A. Schwing
FedML
24
14
0
07 Apr 2022
Symmetry Group Equivariant Architectures for Physics
Symmetry Group Equivariant Architectures for Physics
A. Bogatskiy
S. Ganguly
Thomas Kipf
Risi Kondor
David W. Miller
...
Jan T. Offermann
M. Pettee
P. Shanahan
C. Shimmin
S. Thais
AI4CE
19
27
0
11 Mar 2022
Invariance Learning in Deep Neural Networks with Differentiable Laplace
  Approximations
Invariance Learning in Deep Neural Networks with Differentiable Laplace Approximations
Alexander Immer
Tycho F. A. van der Ouderaa
Gunnar Rätsch
Vincent Fortuin
Mark van der Wilk
BDL
31
44
0
22 Feb 2022
Equivariance versus Augmentation for Spherical Images
Equivariance versus Augmentation for Spherical Images
Jan E. Gerken
Oscar Carlsson
H. Linander
F. Ohlsson
Christoffer Petersson
Daniel Persson
3DPC
22
14
0
08 Feb 2022
Improving the Sample-Complexity of Deep Classification Networks with
  Invariant Integration
Improving the Sample-Complexity of Deep Classification Networks with Invariant Integration
M. Rath
A. P. Condurache
25
8
0
08 Feb 2022
FourierNet: Shape-Preserving Network for Henle's Fiber Layer
  Segmentation in Optical Coherence Tomography Images
FourierNet: Shape-Preserving Network for Henle's Fiber Layer Segmentation in Optical Coherence Tomography Images
Selahattin Cansiz
Cem Kesim
Sevval Nur Bektas
Zeynep Kulali
M. Hasanreisoğlu
C. Gunduz-Demir
33
9
0
17 Jan 2022
Speeding up Learning Quantum States through Group Equivariant
  Convolutional Quantum Ansätze
Speeding up Learning Quantum States through Group Equivariant Convolutional Quantum Ansätze
Han Zheng
Zimu Li
Junyu Liu
Sergii Strelchuk
Risi Kondor
50
54
0
14 Dec 2021
Equivariant graph neural networks for fast electron density estimation
  of molecules, liquids, and solids
Equivariant graph neural networks for fast electron density estimation of molecules, liquids, and solids
Peter Bjørn Jørgensen
Arghya Bhowmik
16
36
0
01 Dec 2021
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Deformation Robust Roto-Scale-Translation Equivariant CNNs
Liyao (Mars) Gao
Guang Lin
Wei-wei Zhu
20
8
0
22 Nov 2021
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
SE(3) Equivariant Graph Neural Networks with Complete Local Frames
Weitao Du
He Zhang
Yuanqi Du
Qi Meng
Wei-Neng Chen
Bin Shao
Tie-Yan Liu
53
79
0
26 Oct 2021
Previous
1234
Next