Papers
Communities
Events
Blog
Pricing
Search
Open menu
Home
Papers
1807.01695
Cited By
SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator
4 July 2018
Cong Fang
C. J. Li
Zhouchen Lin
Tong Zhang
Re-assign community
ArXiv
PDF
HTML
Papers citing
"SPIDER: Near-Optimal Non-Convex Optimization via Stochastic Path Integrated Differential Estimator"
50 / 78 papers shown
Title
Variance Reduction Methods Do Not Need to Compute Full Gradients: Improved Efficiency through Shuffling
Daniil Medyakov
Gleb Molodtsov
S. Chezhegov
Alexey Rebrikov
Aleksandr Beznosikov
96
0
0
21 Feb 2025
A single-loop SPIDER-type stochastic subgradient method for expectation-constrained nonconvex nonsmooth optimization
Wei Liu
Yangyang Xu
51
3
0
31 Jan 2025
Adaptive Batch Size for Privately Finding Second-Order Stationary Points
Daogao Liu
Kunal Talwar
100
0
0
10 Oct 2024
Extended convexity and smoothness and their applications in deep learning
Binchuan Qi
Wei Gong
Li Li
56
0
0
08 Oct 2024
Obtaining Lower Query Complexities through Lightweight Zeroth-Order Proximal Gradient Algorithms
Bin Gu
Xiyuan Wei
Hualin Zhang
Yi Chang
Heng-Chiao Huang
FedML
21
0
0
03 Oct 2024
An Accelerated Algorithm for Stochastic Bilevel Optimization under Unbounded Smoothness
Xiaochuan Gong
Jie Hao
Mingrui Liu
31
2
0
28 Sep 2024
Private Zeroth-Order Nonsmooth Nonconvex Optimization
Qinzi Zhang
Hoang Tran
Ashok Cutkosky
38
4
0
27 Jun 2024
Comparisons Are All You Need for Optimizing Smooth Functions
Chenyi Zhang
Tongyang Li
AAML
24
1
0
19 May 2024
Robust Decentralized Learning with Local Updates and Gradient Tracking
Sajjad Ghiasvand
Amirhossein Reisizadeh
Mahnoosh Alizadeh
Ramtin Pedarsani
28
3
0
02 May 2024
Stochastic Halpern iteration in normed spaces and applications to reinforcement learning
Mario Bravo
Juan Pablo Contreras
38
3
0
19 Mar 2024
Non-Convex Stochastic Composite Optimization with Polyak Momentum
Yuan Gao
Anton Rodomanov
Sebastian U. Stich
21
6
0
05 Mar 2024
Probabilistic Guarantees of Stochastic Recursive Gradient in Non-Convex Finite Sum Problems
Yanjie Zhong
Jiaqi Li
Soumendra Lahiri
22
1
0
29 Jan 2024
A Coefficient Makes SVRG Effective
Yida Yin
Zhiqiu Xu
Zhiyuan Li
Trevor Darrell
Zhuang Liu
20
1
0
09 Nov 2023
Adaptive Mirror Descent Bilevel Optimization
Feihu Huang
28
1
0
08 Nov 2023
Communication Compression for Byzantine Robust Learning: New Efficient Algorithms and Improved Rates
Ahmad Rammal
Kaja Gruntkowska
Nikita Fedin
Eduard A. Gorbunov
Peter Richtárik
35
5
0
15 Oct 2023
Oracle Complexity Reduction for Model-free LQR: A Stochastic Variance-Reduced Policy Gradient Approach
Leonardo F. Toso
Han Wang
James Anderson
27
2
0
19 Sep 2023
Achieving Linear Speedup in Decentralized Stochastic Compositional Minimax Optimization
Hongchang Gao
30
1
0
25 Jul 2023
Variance-reduced accelerated methods for decentralized stochastic double-regularized nonconvex strongly-concave minimax problems
Gabriel Mancino-Ball
Yangyang Xu
18
7
0
14 Jul 2023
Efficient preconditioned stochastic gradient descent for estimation in latent variable models
C. Baey
Maud Delattre
E. Kuhn
Jean-Benoist Léger
Sarah Lemler
6
4
0
22 Jun 2023
Federated Multi-Sequence Stochastic Approximation with Local Hypergradient Estimation
Davoud Ataee Tarzanagh
Mingchen Li
Pranay Sharma
Samet Oymak
24
0
0
02 Jun 2023
How to escape sharp minima with random perturbations
Kwangjun Ahn
Ali Jadbabaie
S. Sra
ODL
22
6
0
25 May 2023
On Momentum-Based Gradient Methods for Bilevel Optimization with Nonconvex Lower-Level
Feihu Huang
19
18
0
07 Mar 2023
Private (Stochastic) Non-Convex Optimization Revisited: Second-Order Stationary Points and Excess Risks
Arun Ganesh
Daogao Liu
Sewoong Oh
Abhradeep Thakurta
ODL
17
12
0
20 Feb 2023
Solving stochastic weak Minty variational inequalities without increasing batch size
Thomas Pethick
Olivier Fercoq
P. Latafat
Panagiotis Patrinos
V. Cevher
13
23
0
17 Feb 2023
Breaking the Lower Bound with (Little) Structure: Acceleration in Non-Convex Stochastic Optimization with Heavy-Tailed Noise
Zijian Liu
Jiawei Zhang
Zhengyuan Zhou
30
12
0
14 Feb 2023
Stochastic Dimension-reduced Second-order Methods for Policy Optimization
Jinsong Liu
Chen Xie
Qinwen Deng
Dongdong Ge
Yi-Li Ye
13
1
0
28 Jan 2023
Balance is Essence: Accelerating Sparse Training via Adaptive Gradient Correction
Bowen Lei
Dongkuan Xu
Ruqi Zhang
Shuren He
Bani Mallick
25
6
0
09 Jan 2023
Stochastic Variable Metric Proximal Gradient with variance reduction for non-convex composite optimization
G. Fort
Eric Moulines
44
6
0
02 Jan 2023
Stochastic Inexact Augmented Lagrangian Method for Nonconvex Expectation Constrained Optimization
Zichong Li
Pinzhuo Chen
Sijia Liu
Songtao Lu
Yangyang Xu
13
17
0
19 Dec 2022
Variance-Reduced Conservative Policy Iteration
Naman Agarwal
Brian Bullins
Karan Singh
19
3
0
12 Dec 2022
Decentralized Stochastic Gradient Descent Ascent for Finite-Sum Minimax Problems
Hongchang Gao
16
16
0
06 Dec 2022
An Improved Analysis of (Variance-Reduced) Policy Gradient and Natural Policy Gradient Methods
Yanli Liu
K. Zhang
Tamer Basar
W. Yin
30
102
0
15 Nov 2022
SARAH-based Variance-reduced Algorithm for Stochastic Finite-sum Cocoercive Variational Inequalities
Aleksandr Beznosikov
Alexander Gasnikov
25
2
0
12 Oct 2022
Zeroth-Order Negative Curvature Finding: Escaping Saddle Points without Gradients
Hualin Zhang
Huan Xiong
Bin Gu
22
7
0
04 Oct 2022
On Quantum Speedups for Nonconvex Optimization via Quantum Tunneling Walks
Yizhou Liu
Weijie J. Su
Tongyang Li
16
17
0
29 Sep 2022
NET-FLEET: Achieving Linear Convergence Speedup for Fully Decentralized Federated Learning with Heterogeneous Data
Xin Zhang
Minghong Fang
Zhuqing Liu
Haibo Yang
Jia-Wei Liu
Zhengyuan Zhu
FedML
8
14
0
17 Aug 2022
SYNTHESIS: A Semi-Asynchronous Path-Integrated Stochastic Gradient Method for Distributed Learning in Computing Clusters
Zhuqing Liu
Xin Zhang
Jia-Wei Liu
21
1
0
17 Aug 2022
Multi-block-Single-probe Variance Reduced Estimator for Coupled Compositional Optimization
Wei Jiang
Gang Li
Yibo Wang
Lijun Zhang
Tianbao Yang
25
16
0
18 Jul 2022
SPIRAL: A superlinearly convergent incremental proximal algorithm for nonconvex finite sum minimization
Pourya Behmandpoor
P. Latafat
Andreas Themelis
Marc Moonen
Panagiotis Patrinos
19
2
0
17 Jul 2022
Quantum Neural Network Compression
Zhirui Hu
Peiyan Dong
Zhepeng Wang
Youzuo Lin
Yanzhi Wang
Weiwen Jiang
GNN
25
28
0
04 Jul 2022
On the Convergence of Momentum-Based Algorithms for Federated Bilevel Optimization Problems
Hongchang Gao
FedML
18
1
0
28 Apr 2022
AUC Maximization in the Era of Big Data and AI: A Survey
Tianbao Yang
Yiming Ying
33
178
0
28 Mar 2022
Tackling benign nonconvexity with smoothing and stochastic gradients
Harsh Vardhan
Sebastian U. Stich
16
8
0
18 Feb 2022
Optimal Algorithms for Stochastic Multi-Level Compositional Optimization
Wei Jiang
Bokun Wang
Yibo Wang
Lijun Zhang
Tianbao Yang
74
17
0
15 Feb 2022
Decentralized Stochastic Variance Reduced Extragradient Method
Luo Luo
Haishan Ye
16
7
0
01 Feb 2022
A Novel Convergence Analysis for Algorithms of the Adam Family
Zhishuai Guo
Yi Tian Xu
W. Yin
R. L. Jin
Tianbao Yang
39
46
0
07 Dec 2021
Federated Expectation Maximization with heterogeneity mitigation and variance reduction
Aymeric Dieuleveut
G. Fort
Eric Moulines
Geneviève Robin
FedML
23
5
0
03 Nov 2021
Faster Perturbed Stochastic Gradient Methods for Finding Local Minima
Zixiang Chen
Dongruo Zhou
Quanquan Gu
25
1
0
25 Oct 2021
On Improving Model-Free Algorithms for Decentralized Multi-Agent Reinforcement Learning
Weichao Mao
Lin F. Yang
K. Zhang
Tamer Bacsar
23
57
0
12 Oct 2021
A general sample complexity analysis of vanilla policy gradient
Rui Yuan
Robert Mansel Gower
A. Lazaric
69
62
0
23 Jul 2021
1
2
Next